[Existence de solutions faibles globales dʼun modèle bicouche bidimensionnel de Saint-Venant]
Nous considérons un système composé par deux fluides immiscibles dans un domaine bidimensionnel pouvant être représenté par un modèle bicouche visqueux de Saint-Venant avec des termes de friction additionnels et des effets de capillarité. Nous donnons un théorème dʼexistence de solutions faibles globales dans un domaine périodique.
We consider a system composed by two immiscible fluids in two-dimensional space that can be modelized by a bilayer Shallow Water equations with extra friction terms and capillary effects. We give an existence theorem of global weak solutions in a periodic domain.
Accepté le :
Publié le :
Gladys Narbona-Reina 1 ; Jean De Dieu Zabsonré 2
@article{CRMATH_2011__349_5-6_285_0, author = {Gladys Narbona-Reina and Jean De Dieu Zabsonr\'e}, title = {Existence of global weak solutions for a viscous {2D} bilayer {Shallow} {Water} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {285--289}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.02.011}, language = {en}, }
TY - JOUR AU - Gladys Narbona-Reina AU - Jean De Dieu Zabsonré TI - Existence of global weak solutions for a viscous 2D bilayer Shallow Water model JO - Comptes Rendus. Mathématique PY - 2011 SP - 285 EP - 289 VL - 349 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2011.02.011 LA - en ID - CRMATH_2011__349_5-6_285_0 ER -
Gladys Narbona-Reina; Jean De Dieu Zabsonré. Existence of global weak solutions for a viscous 2D bilayer Shallow Water model. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 285-289. doi : 10.1016/j.crma.2011.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.011/
[1] Existence of weak solutions for 2d viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., Volume 238 (2003) no. 1,2, pp. 211-223
[2] On the construction of approximate solutions for the 2d viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pure Appl., Volume 86 (2006), pp. 362-368
[3] Another proof of stability for global weak solutions of 2D degenerated shallow water models, J. Math. Fluid Mech., Volume 11 (2009) no. 4, pp. 536-551
[4] Sur un problème de shallow water bicouche avec conditions aux limites de Dirichlet, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 719-724
[5] On a bi-layer shallow water problem, Nonlinear Anal., Volume 4 (2003), pp. 139-171
[6] Derivation of a bi-layer Shallow-Water model with viscosity. Numerical validation, CMES, Volume 43 (2009) no. 1, pp. 27-71
[7] Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 2971-2984
Cité par Sources :
Commentaires - Politique