[Une marche excité équilibrée]
Nous étudions le processus suivant sur . À la première visite en un site, les deux premières coordonnées effectuent un saut dʼune marche simple (2-dimensionnelle). Aux visites suivantes en ce site, ce sont les deux dernières coordonnées qui effectuent un saut de marche simple. Nous montrons que ce processus est presque sûrement transitoire. Nous discutons également des dimensions inférieures et divers généralisations et questions connexes sont proposées.
The following random process on is studied. At first visit to a site, the two first coordinates perform a (2-dimensional) simple random walk step. At further visits, it is the last two coordinates which perform a simple random walk step. We prove that this process is almost surely transient. The lower dimensional versions are discussed and various generalizations and related questions are proposed.
Accepté le :
Publié le :
Itaı Benjamini 1 ; Gady Kozma 1 ; Bruno Schapira 2
@article{CRMATH_2011__349_7-8_459_0, author = {Ita{\i} Benjamini and Gady Kozma and Bruno Schapira}, title = {A balanced excited random walk}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--462}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.018}, language = {en}, }
Itaı Benjamini; Gady Kozma; Bruno Schapira. A balanced excited random walk. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 459-462. doi : 10.1016/j.crma.2011.02.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.018/
[1] Excited random walk against a wall, Probab. Theory Related Fields, Volume 140 (2008), pp. 83-102
[2] Excited random walk, Electron. Commun. Probab., Volume 8 (2003), pp. 86-92 (electronic)
[3] An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, 1971
[4] Excited against the tide: A random walk with competing drifts (preprint) | arXiv
[5] Random walks with occasionally modified transition probabilities (preprint) | arXiv
[6] Positively and negatively excited random walks on integers, with branching processes, Electron. J. Probab., Volume 13 (2008), pp. 1952-1979
[7] G. Kozma, Problem session, in: Non-classical interacting random walks, Oberwolfach report 27/2007, http://www.mfo.de/programme/schedule/2007/21/OWR_2007_27.pdf.
[8] Intersections of Random Walks, Probab. Appl., Birkhäuser Boston, Inc., Boston, MA, 1991 (219 pp)
[9] Random Walk: A Modern Introduction, Cambridge Stud. Adv. Math., vol. 123, Cambridge Univ. Press, Cambridge, 2010
[10] On a general many-dimensional excited random walk (preprint) | arXiv
[11] Linearly edge-reinforced random walks, IMS Lecture Notes, Monogr. Ser. Dynamics & Stochastics, vol. 48, Inst. Math. Statist., Beachwood, OH, 2006, pp. 66-77
[12] A survey of random processes with reinforcement, Probab. Surv., Volume 4 (2007), pp. 1-79 (electronic)
[13] Multi-excited random walks on integers, Probab. Theory Related Fields, Volume 133 (2005), pp. 98-122
Cité par Sources :
Commentaires - Politique