[La transforme de Fourier–Stieltjes de la fonction de Minkowski et une réponse positive au probléme de Salem]
Grace à des propriétés structurelles et asymptotiques de la transformation de Kontorovich–Lebedev associé à la fonction point dʼinterrogation de Minkowski, on apporte une réponse positive à la question posée par R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) : la transformée de Fourier–Stieltjes de la fonction point dʼinterrogation de Minkowski est-elle nulle à lʼinfini ?
By using structural and asymptotic properties of the Kontorovich–Lebedev transform associated with Minkowskiʼs question mark function, we give an affirmative answer to the question posed by R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) whether its Fourier–Stieltjes transform vanishes at infinity.
Accepté le :
Publié le :
Semyon Yakubovich 1
@article{CRMATH_2011__349_11-12_633_0, author = {Semyon Yakubovich}, title = {The {Fourier{\textendash}Stieltjes} transform of {Minkowski's} $ ?(x)$ function and an affirmative answer to {Salem's} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {633--636}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.04.004}, language = {en}, }
TY - JOUR AU - Semyon Yakubovich TI - The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem JO - Comptes Rendus. Mathématique PY - 2011 SP - 633 EP - 636 VL - 349 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2011.04.004 LA - en ID - CRMATH_2011__349_11-12_633_0 ER -
Semyon Yakubovich. The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 633-636. doi : 10.1016/j.crma.2011.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.004/
[1] The moments of Minkowski question mark function: the dyadic period function, Glasg. Math. J., Volume 52 (2010) no. 1, pp. 41-64
[2] Sur une fonction réelle de Minkowski, J. Math. Pures Appl., Volume 17 (1938), pp. 105-151
[3] Higher Transcendental Functions, vols. I and II, McGraw-Hill, 1953
[4] On Fourier–Stieltjes coefficients of singular functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 20 (1956), pp. 179-196 (in Russian)
[5] Sur une formule dʼinversion, C.R. (Dokl.) Acad. Sci. URSS, Volume 52 (1946), pp. 655-658 (in French)
[6] Explicit error terms for asymptotic expansions of Stieltjes transforms, J. Inst. Math. Appl., Volume 22 (1978), pp. 129-145
[7] Sur lʼinicité du développment trigonométrique, C. R. Acad. Sci. Paris, Volume 163 (1916), pp. 433-436
[8] On an asymptotic expansion of the Kontorovich–Lebedev transform, Appl. Anal., Volume 39 (1990), pp. 249-263
[9] Error bounds for stationary phase approximations, SIAM J. Math. Anal., Volume 5 (1974), pp. 19-29
[10] Integrals and Series: vol. 2: Special Functions, Gordon and Breach, New York, 1986
[11] On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., Volume 53 (1943) no. 3, pp. 427-439
[12] On monotonic functions whose spectrum is a Cantor set with constant ratio of dissection, Proc. Nat. Acad. Sc. USA, Volume 41 (1955) no. 1, pp. 49-55
[13] R. Salem, Algebraic Numbers and Fourier Analysis, Heath Math. Monographs, Boston, 1963.
[14] The Use of Integral Transforms, McGray Hill, New York, 1972
[15] Fourier–Stieltjes transforms and singular infinite convolutions, Amer. J. Math., Volume 60 (1938) no. 3, pp. 513-522
[16] Index Transforms, World Scientific Publishing Company, Singapore, 1996
[17] On a progress in the Kontorovich–Lebedev transform theory and related integral operators, Integral Transforms and Special Functions, Volume 19 (2008) no. 7, pp. 509-534
[18] The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Ser. Math. and Appl., vol. 287, Kluwer, Dordrecht, Boston, London, 1994
Cité par Sources :
Commentaires - Politique