Comptes Rendus
Mathematical Analysis/Harmonic Analysis
The Fourier–Stieltjes transform of Minkowskiʼs ?(x) function and an affirmative answer to Salemʼs problem
[La transforme de Fourier–Stieltjes de la fonction ?(x) de Minkowski et une réponse positive au probléme de Salem]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 633-636.

By using structural and asymptotic properties of the Kontorovich–Lebedev transform associated with Minkowskiʼs question mark function, we give an affirmative answer to the question posed by R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) whether its Fourier–Stieltjes transform vanishes at infinity.

Grace à des propriétés structurelles et asymptotiques de la transformation de Kontorovich–Lebedev associé à la fonction point dʼinterrogation de Minkowski, on apporte une réponse positive à la question posée par R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) : la transformée de Fourier–Stieltjes de la fonction point dʼinterrogation de Minkowski est-elle nulle à lʼinfini ?

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.004

Semyon Yakubovich 1

1 Department of Mathematics, Faculty of Sciences, University of Porto, Campo Alegre st., 687, 4169-007 Porto, Portugal
@article{CRMATH_2011__349_11-12_633_0,
     author = {Semyon Yakubovich},
     title = {The {Fourier{\textendash}Stieltjes} transform of {Minkowski's} $ ?(x)$ function and an affirmative answer to {Salem's} problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--636},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.004},
     language = {en},
}
TY  - JOUR
AU  - Semyon Yakubovich
TI  - The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 633
EP  - 636
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.04.004
LA  - en
ID  - CRMATH_2011__349_11-12_633_0
ER  - 
%0 Journal Article
%A Semyon Yakubovich
%T The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem
%J Comptes Rendus. Mathématique
%D 2011
%P 633-636
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.04.004
%G en
%F CRMATH_2011__349_11-12_633_0
Semyon Yakubovich. The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 633-636. doi : 10.1016/j.crma.2011.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.004/

[1] G. Alkauskas The moments of Minkowski question mark function: the dyadic period function, Glasg. Math. J., Volume 52 (2010) no. 1, pp. 41-64

[2] A. Denjoy Sur une fonction réelle de Minkowski, J. Math. Pures Appl., Volume 17 (1938), pp. 105-151

[3] A. Erdélyi; W. Magnus; F. Oberhettinger; F.G. Tricomi Higher Transcendental Functions, vols. I and II, McGraw-Hill, 1953

[4] O.S. Ivas̃ev-Musatov On Fourier–Stieltjes coefficients of singular functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 20 (1956), pp. 179-196 (in Russian)

[5] N.N. Lebedev Sur une formule dʼinversion, C.R. (Dokl.) Acad. Sci. URSS, Volume 52 (1946), pp. 655-658 (in French)

[6] J.P. McClure; R. Wong Explicit error terms for asymptotic expansions of Stieltjes transforms, J. Inst. Math. Appl., Volume 22 (1978), pp. 129-145

[7] D. Menchoff Sur lʼinicité du développment trigonométrique, C. R. Acad. Sci. Paris, Volume 163 (1916), pp. 433-436

[8] D. Naylor On an asymptotic expansion of the Kontorovich–Lebedev transform, Appl. Anal., Volume 39 (1990), pp. 249-263

[9] F.W.J. Olver Error bounds for stationary phase approximations, SIAM J. Math. Anal., Volume 5 (1974), pp. 19-29

[10] A.P. Prudnikov; Yu.A. Brychkov; O.I. Marichev Integrals and Series: vol. 2: Special Functions, Gordon and Breach, New York, 1986

[11] R. Salem On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., Volume 53 (1943) no. 3, pp. 427-439

[12] R. Salem On monotonic functions whose spectrum is a Cantor set with constant ratio of dissection, Proc. Nat. Acad. Sc. USA, Volume 41 (1955) no. 1, pp. 49-55

[13] R. Salem, Algebraic Numbers and Fourier Analysis, Heath Math. Monographs, Boston, 1963.

[14] I.N. Sneddon The Use of Integral Transforms, McGray Hill, New York, 1972

[15] N. Wiener; A. Wintner Fourier–Stieltjes transforms and singular infinite convolutions, Amer. J. Math., Volume 60 (1938) no. 3, pp. 513-522

[16] S.B. Yakubovich Index Transforms, World Scientific Publishing Company, Singapore, 1996

[17] S. Yakubovich On a progress in the Kontorovich–Lebedev transform theory and related integral operators, Integral Transforms and Special Functions, Volume 19 (2008) no. 7, pp. 509-534

[18] S.B. Yakubovich; Yu.F. Luchko The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Ser. Math. and Appl., vol. 287, Kluwer, Dordrecht, Boston, London, 1994

  • Semyon Yakubovich On the affirmative solution to Salem's problem, Analysis (München), Volume 39 (2019) no. 4, pp. 135-149 | DOI:10.1515/anly-2019-0026 | Zbl:1431.42011
  • Elena P. Golubeva Salem's problem for the inverse Minkowski ?(t) function, Journal of Mathematical Sciences (New York), Volume 207 (2015) no. 6, pp. 808-814 | DOI:10.1007/s10958-015-2404-7 | Zbl:1369.11051
  • Semyon Yakubovich On some Rajchman measures and equivalent Salem's problem, Communications in Mathematical Analysis, Volume 14 (2013) no. 1, pp. 28-41 | Zbl:1277.33004
  • Giedrius Alkauskas The Minkowski ?(x) function and Salem's problem, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 350 (2012) no. 3-4, pp. 137-140 | DOI:10.1016/j.crma.2012.01.012 | Zbl:1247.11011

Cité par 4 documents. Sources : zbMATH

Commentaires - Politique