A graph G is domination edge critical, or just γ-edge critical, if for any edge e not in G, . We will characterize all connected γ-edge critical cactus graphs.
Un graphe G est un graphe à domination critique par addition dʼarête, ou simplement γ-critique par arête, si pour toute arête e qui nʼest pas dans G on a . Nous caractérisons les graphes cactus, connexes et γ-critiques par arête.
Accepted:
Published online:
Nader Jafari Rad 1; Sayyed Heidar Jafari 1
@article{CRMATH_2011__349_9-10_485_0, author = {Nader Jafari Rad and Sayyed Heidar Jafari}, title = {Some notes on domination edge critical graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {485--488}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.005}, language = {en}, }
Nader Jafari Rad; Sayyed Heidar Jafari. Some notes on domination edge critical graphs. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 485-488. doi : 10.1016/j.crma.2011.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.005/
[1] Some results related to toughness of 3-domination critical graphs, Discrete Mathematics, Volume 272 (2003), pp. 5-15
[2] Matching properties in domination critical graphs, Discrete Mathematics, Volume 277 (2004), pp. 1-13
[3] The diameter of domination k-critical graphs, Journal of Graph Theory, Volume 18 (1994), pp. 723-734
[4] Fundamentals of Domination in Graphs (T.W. Haynes; S.T. Hedetniemi; P.J. Slater, eds.), Marcel Dekker, Inc., New York, 1998
[5] Domination critical graphs, Journal of Combinatorial Theory Ser. B, Volume 34 (1983), pp. 65-76
[6] Critical concept in domination, Discrete Mathematics, Volume 86 (1990), pp. 33-46
Cited by Sources:
Comments - Policy