In a three-dimensional bounded possibly multiply-connected domain of class , we consider the stationary Stokes equations with nonstandard boundary conditions of the form and or and on the boundary Γ. We prove the existence and uniqueness of weak, strong and very weak solutions corresponding to each boundary condition in theory. Our proofs are based on obtaining conditions that play a fundamental role. And finally, we give two Helmholtz decompositions that consist of two kinds of boundary conditions such as and on Γ.
Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe de classe , nous considérons les équations stationnaires de Stokes avec des conditions aux limites de la forme et ou et sur le bord Γ. Nous prouvons lʼexistence et lʼunicité des solutions faibles, fortes et très faibles en théorie . Nos preuves sont basées sur lʼobtention de conditions qui jouent un rôle fondamental. Finalement, on donne deux décompositions dʼHelmholtz qui tiennent compte des deux types de conditions aux limites et sur Γ.
Accepted:
Published online:
Chérif Amrouche 1; Nour El Houda Seloula 1, 2
@article{CRMATH_2011__349_11-12_703_0, author = {Ch\'erif Amrouche and Nour El Houda Seloula}, title = {Stokes equations and elliptic systems with nonstandard boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {703--708}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.04.007}, language = {en}, }
TY - JOUR AU - Chérif Amrouche AU - Nour El Houda Seloula TI - Stokes equations and elliptic systems with nonstandard boundary conditions JO - Comptes Rendus. Mathématique PY - 2011 SP - 703 EP - 708 VL - 349 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2011.04.007 LA - en ID - CRMATH_2011__349_11-12_703_0 ER -
Chérif Amrouche; Nour El Houda Seloula. Stokes equations and elliptic systems with nonstandard boundary conditions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 703-708. doi : 10.1016/j.crma.2011.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.007/
[1] Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[2] Decomposition of vector space and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 119 (1994) no. 44, pp. 109-140
[3] Stationary Stokes, Oseen and Navier–Stokes equations with singular data, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 597-651
[4] C. Amrouche, N. Seloula, -theory for vector potentials and Sobolevʼs inequalities for vector fields. Application to the Stokes problemʼs with pressure boundary conditions, submitted for publication.
[5] The Stokes and Navier–Stokes equations with boundary conditions involving the pressure, Jpn. J. Math., Volume 20 (1994), pp. 263-318
[6] -variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains, Indiana Univ. Math. J., Volume 58 (2009) no. 4
[7] Theory and Numerical Analysis of the Navier–Stokes Equations, North-Holland, Amsterdam, 1977
Cited by Sources:
Comments - Policy