[Points puissants de hauteur bornée]
Let
Soit
Accepté le :
Publié le :
Karl Van Valckenborgh 1
@article{CRMATH_2011__349_11-12_603_0, author = {Karl Van Valckenborgh}, title = {Squareful points of bounded height}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--606}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.001}, language = {en}, }
Karl Van Valckenborgh. Squareful points of bounded height. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 603-606. doi : 10.1016/j.crma.2011.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.001/
[1] Birational geometry for number theorists, Arithmetic Geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 335-373
[2] Fibres multiples sur les surfaces : aspects geométriques, hyperboliques et arithmétiques, Manuscripta Math., Volume 117 (2005) no. 4, pp. 429-461
[3] Analytic Methods for Diophantine Equations and Diophantine Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005 (With a foreword by R.C. Vaughan, D.R. Heath-Brown and D.E. Freeman, edited and prepared for publication by T.D. Browning)
[4] The projective line minus three fractional points, July 2006 http://www-math.mit.edu/~poonen/slides/campana_s.pdf
[5] Analytische Methoden für Diophantische Gleichungen. Einführende Vorlesungen, DMV Seminar, vol. 5, Birkhäuser Verlag, Basel, 1984
- Decoupling for moment manifolds associated to Arkhipov-Chubarikov-Karatsuba systems, Advances in Mathematics, Volume 360 (2020), p. 56 (Id/No 106889) | DOI:10.1016/j.aim.2019.106889 | Zbl:1469.11273
- Near-optimal mean value estimates for multidimensional Weyl sums, Geometric and Functional Analysis. GAFA, Volume 23 (2013) no. 6, pp. 1962-2024 | DOI:10.1007/s00039-013-0242-7 | Zbl:1320.11028
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier