Comptes Rendus
Partial Differential Equations
Anisotropic entire large solutions
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 653-656.

Given q(0,1], we construct nonradial entire large solutions to the equation Δu=uq in RN.

Pour q(0,1], nous construisons des solutions globales, explosives, et non radiales de lʼéquation Δu=uq dans RN.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.05.002

Louis Dupaigne 1

1 LAMFA, UMR CNRS 6140, Université Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
@article{CRMATH_2011__349_11-12_653_0,
     author = {Louis Dupaigne},
     title = {Anisotropic entire large solutions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {653--656},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.002},
     language = {en},
}
TY  - JOUR
AU  - Louis Dupaigne
TI  - Anisotropic entire large solutions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 653
EP  - 656
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.05.002
LA  - en
ID  - CRMATH_2011__349_11-12_653_0
ER  - 
%0 Journal Article
%A Louis Dupaigne
%T Anisotropic entire large solutions
%J Comptes Rendus. Mathématique
%D 2011
%P 653-656
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.05.002
%G en
%F CRMATH_2011__349_11-12_653_0
Louis Dupaigne. Anisotropic entire large solutions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 653-656. doi : 10.1016/j.crma.2011.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.002/

[1] M.-F. Bidaut-Véron; P. Grillot Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential, Appl. Anal., Volume 70 (1999) no. 3–4, pp. 233-258 | DOI

[2] H. Brezis Comments on two notes by L. Ma and X. Xu, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 269-271

[3] L. Dupaigne Symétrie : si, mais seulement si ?, AMS Contemporary Mathematics, vol. 528, AMS, 2010 (Symmetry for Elliptic PDEs)

[4] L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, preprint.

[5] G. Yang; Z. Guo Non-negative radial solution for an elliptic equation, J. Partial Differ. Equ., Volume 18 (2005) no. 1, pp. 13-21

[6] J.B. Keller On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[7] R. Osserman On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[8] S.D. Taliaferro Radial symmetry of large solutions of nonlinear elliptic equations, Proc. Amer. Math. Soc., Volume 124 (1996) no. 2, pp. 447-455

Cited by Sources:

Comments - Policy