[Remarque sur les solutions en dualité pour une loi de conservation scalaire faiblement non-linéaire]
Nous considérons lʼexistence et lʼunicité de solutions en dualité pour une loi de conservation scalaire avec un noyau dʼinteraction non-local. En suivant Bouchut et James (1999) [3], une notion de solution en dualité pour un tel système non-linéaire est proposée pour laquelle nous nʼavons cependant pas dʼunicité. Dans ce travail nous prouvons alors quʼen sélectionnant le flux, nous retrouvons un résultat dʼexistence et dʼunicité des solutions mesures de notre système.
We investigate existence and uniqueness of duality solutions for a scalar conservation law with a nonlocal interaction kernel. Following Bouchut and James (1999) [3], a notion of duality solution for such a nonlinear system is proposed, for which we do not have uniqueness. However we prove that a natural definition of the flux allows to select a solution for which uniqueness holds.
Accepté le :
Publié le :
François James 1, 2 ; Nicolas Vauchelet 3, 4, 5
@article{CRMATH_2011__349_11-12_657_0, author = {Fran\c{c}ois James and Nicolas Vauchelet}, title = {A remark on duality solutions for some weakly nonlinear scalar conservation laws}, journal = {Comptes Rendus. Math\'ematique}, pages = {657--661}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.004}, language = {en}, }
TY - JOUR AU - François James AU - Nicolas Vauchelet TI - A remark on duality solutions for some weakly nonlinear scalar conservation laws JO - Comptes Rendus. Mathématique PY - 2011 SP - 657 EP - 661 VL - 349 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2011.05.004 LA - en ID - CRMATH_2011__349_11-12_657_0 ER -
François James; Nicolas Vauchelet. A remark on duality solutions for some weakly nonlinear scalar conservation laws. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 657-661. doi : 10.1016/j.crma.2011.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.004/
[1] theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 45-83
[2] One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal. TMA, Volume 32 (1998) no. 7, pp. 891-933
[3] Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness, Comm. Partial Differential Equations, Volume 24 (1999) no. 11–12, pp. 2173-2189
[4] Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., Volume 156 (2011), pp. 229-271
[5] Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., Volume 51 (2005), pp. 595-615
[6] F. James, N. Vauchelet, On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis, Riv. Mat. Univ. Parma, in press; preprint is available at . | HAL
[7] High field limit for Vlasov–Poisson–Fokker–Planck equations, Arch. Rational Mech. Anal., Volume 158 (2001) no. 1, pp. 29-59
[8] Diagonal defect measures, adhesion dynamics and Euler equations, Methods Appl. Anal., Volume 9 (2002), pp. 533-561
Cité par Sources :
Commentaires - Politique