[Asymptotic controllability for linear hyperbolic systems]
In this Note we introduce the asymptotic controllability and the asymptotic null controllability for 1-D linear hyperbolic systems under the lack of boundary controls. We claim that they are equivalent, respectively, to the strong observability and the weak observability for the dual system. An example of hyperbolic system with only one boundary control is shown to be asymptotically controllable but not exactly controllable.
Dans cette Note, nous considérons la contrôlabilité asymptotique et la contrôlabilité nulle asymptotique pour des systèmes hyperboliques linéaires en dimension dʼespace un. Nous établissons quʼelles sont équivalentes, respectivement, à lʼobservabilité forte et lʼobservabilité faible du système dual. Nous donnons un exemple dʼun système hyperbolique sousmis à un seul contrôle frontière, qui est asymptotiquement contrôlable mais non exactement contrôlable.
Accepted:
Published online:
Tatsien Li 1, 2; Bopeng Rao 3
@article{CRMATH_2011__349_11-12_663_0, author = {Tatsien Li and Bopeng Rao}, title = {Contr\^olabilit\'e asymptotique de syst\`emes hyperboliques lin\'eaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {663--668}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.03.006}, language = {fr}, }
Tatsien Li; Bopeng Rao. Contrôlabilité asymptotique de systèmes hyperboliques linéaires. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 663-668. doi : 10.1016/j.crma.2011.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.006/
[1] Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, 2005
[2] Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, vol. 3, American Institute of Mathematical Sciences & Higher Education Press, 2010
[3] Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math. B, Volume 23 (2002), pp. 209-218
[4] Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., Volume 41 (2003), pp. 1748-1755
[5] Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems, Chin. Ann. Math. B, Volume 31 (2010), pp. 723-742
[6] Exact controllability and exact observability for quasilinear hyperbolic systems: Known results and open problems (Tatsien Li; Yuejun Peng; Bopeng Rao, eds.), Series in Contemporary Applied Mathematics, vol. 15, Higher Education Press, World Scientific, 2010, pp. 374-385
[7] Perturbations et Stabilisation de Systèmes Distribués, tome 1, Masson, 1988
[8] Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., Volume 20 (1978), pp. 639-739
Cited by Sources:
Comments - Politique