Comptes Rendus
Partial Differential Equations/Probability Theory
Wiener chaos and uniqueness for stochastic transport equation
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 669-672.

We prove a uniqueness result for the stochastic transport linear equation (STLE), without any W1,1 or BV hypothesis on the coefficient, which is needed for the corresponding deterministic equation. We use Wiener chaos decomposition to pass from the STLE to a deterministic second-order transport equation with uniqueness property.

On prouve un résultat dʼunicité pour lʼéquation de transport linéaire stochastique (STLE), sans aucune hypothèse de type W1,1 ou BV sur le coefficient, qui est nécessaire pour lʼéquation déterministe correspondante. On utilise la décomposition en chaos de Wiener pour passer de la STLE à une équation de transport du second ordre déterministe avec la propriété dʼunicité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.05.006

Mario Maurelli 1

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2011__349_11-12_669_0,
     author = {Mario Maurelli},
     title = {Wiener chaos and uniqueness for stochastic transport equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {669--672},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.006},
     language = {en},
}
TY  - JOUR
AU  - Mario Maurelli
TI  - Wiener chaos and uniqueness for stochastic transport equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 669
EP  - 672
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.05.006
LA  - en
ID  - CRMATH_2011__349_11-12_669_0
ER  - 
%0 Journal Article
%A Mario Maurelli
%T Wiener chaos and uniqueness for stochastic transport equation
%J Comptes Rendus. Mathématique
%D 2011
%P 669-672
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.05.006
%G en
%F CRMATH_2011__349_11-12_669_0
Mario Maurelli. Wiener chaos and uniqueness for stochastic transport equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2011.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.006/

[1] L. Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260

[2] L. Ambrosio; G. Crippa; A. Figalli; L.V. Spinolo Some new well-posedness results for continuity and transport equation, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920

[3] S. Attanasio; F. Flandoli Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise | arXiv

[4] N. Bouleau; F. Hirsch Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991

[5] N. Depauw Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dʼun hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 249-252

[6] R.J. DiPerna; P.-L. Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

[7] F. Flandoli; M. Gubinelli; E. Priola Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010), pp. 1-53

[8] N.V. Krylov; M. Röckner Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, Volume 131 (2005), pp. 154-196

[9] Y. Le Jan; O. Raimond Integration of Brownian vector fields, Ann. Probab., Volume 30 (2002), pp. 826-873

Cited by Sources:

Comments - Policy