Comptes Rendus
Article de synthèse
Cosmology, the big bang and the BKL conjecture
[Cosmologie, big bang et conjecture BKL]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 53-78.

Il s’agit d’un article de revue sur les résultats mathématiques en cosmologie, écrit en l’honneur du 100ème anniversaire d’Yvonne Choquet-Bruhat. Il commence par une brève description de certaines questions essentielles : la censure cosmique forte, la relation entre l’asymptotique future et la géométrisation dans le cas du vide, la conjecture de l’absence de cheveux dans le cadre cosmique et la proposition BKL. Il aborde ensuite les résultats, en commençant par ceux obtenus dans des situations avec symétrie. Il se poursuit par un examen des résultats de stabilité future non linéaire globale, des résultats de formation stable du big bang, des résultats concernant les solutions d’équations linéaires sur les espaces-temps cosmologiques et des résultats numériques. L’article contient une liste substantielle, mais très incomplète, de références à la littérature.

This is a review article of mathematical results in cosmology, written in honor of Yvonne Choquet-Bruhat’s 100th birthday. It starts with a brief description of some of the essential questions: strong cosmic censorship; the relation between the future asymptotics and geometrization in the vacuum setting; the cosmic no-hair conjecture; and the BKL-proposal. It then turns to results, starting with ones obtained in situations with symmetry. It continues with a review of future global non-linear stability results, stable big bang formation results, results concerning solutions to linear equations on cosmological backgrounds and numerical results. The article contains a substantial, but very incomplete, list of references to the literature.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.277
Keywords: Global analysis, General relativity, Lorentzian geometry, Nonlinear evolution equations, Cosmology, The big bang and the BKL proposal
Mots-clés : Analyse globale, Relativité générale, Géométrie lorentzienne, Équations d’évolution non linéaires, Cosmologie, Big bang et proposition BKL

Hans Ringström 1

1 Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_53_0,
     author = {Hans Ringstr\"om},
     title = {Cosmology, the big bang and the {BKL} conjecture},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {53--78},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.277},
     language = {en},
}
TY  - JOUR
AU  - Hans Ringström
TI  - Cosmology, the big bang and the BKL conjecture
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 53
EP  - 78
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.277
LA  - en
ID  - CRMECA_2025__353_G1_53_0
ER  - 
%0 Journal Article
%A Hans Ringström
%T Cosmology, the big bang and the BKL conjecture
%J Comptes Rendus. Mécanique
%D 2025
%P 53-78
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.277
%G en
%F CRMECA_2025__353_G1_53_0
Hans Ringström. Cosmology, the big bang and the BKL conjecture. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 53-78. doi : 10.5802/crmeca.277. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.277/

[1] H. Nussbaumer; L. Bieri Discovering the Expanding Universe, Cambridge University Press, Cambridge, 2009

[2] S. W. Hawking The occurrence of singularities in cosmology. I, Proc. R. Soc. Lond. A, Volume 294 (1966), pp. 511-521 | DOI

[3] S. W. Hawking The occurrence of singularities in cosmology. II, Proc. R. Soc. Lond. A, Volume 295 (1966), pp. 490-493 | DOI

[4] B. O’Neill Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers ], New York, 1983, xiii+468 pages (With applications to relativity)

[5] A. A. Penzias; R. W. Wilson A measurement of excess antenna temperature at 4080 Mc/s, Astrophys. J. Lett., Volume 142 (1965), pp. 419-421

[6] Y. Fourès-Bruhat Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI

[7] Y. Choquet-Bruhat; R. Geroch Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 http://projecteuclid.org/euclid.cmp/1103841822

[8] Y. Fourès-Bruhat Théorèmes d’existence en mécanique des fluides relativistes, Bull. Soc. Math. France, Volume 86 (1958), pp. 155-175

[9] Y. Choquet-Bruhat Theorem of uniqueness and local stability for Liouville–Einstein equations, J. Math. Phys., Volume 11 (1970), pp. 3238-3243 | DOI

[10] Y. Choquet-Bruhat Un théorème d’existence pour le système intégrodifférentiel d’Einstein–Liouville, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A625-A628

[11] Y. Choquet-Bruhat Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville, Ann. Inst. Fourier (Grenoble), Volume 21 (1971) no. 3, pp. 181-201

[12] D. Bancel; Y. Choquet-Bruhat Existence, uniqueness, and local stability for the Einstein–Maxwell–Boltzman system, Commun. Math. Phys., Volume 33 (1973), pp. 83-96 http://projecteuclid.org/euclid.cmp/1103859246

[13] V. Moncrief; D. M. Eardley The global existence problem and cosmic censorship in general relativity, Gen. Relativ. Gravit., Volume 13 (1981) no. 9, pp. 887-892 | DOI

[14] A. E. Fischer; V. Moncrief Hamiltonian reduction and perturbations of continuously self-similar (n + 1)-dimensional Einstein vacuum spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 21, pp. 5557-5589 | DOI

[15] A. E. Fischer; V. Moncrief Conformal volume collapse of 3-manifolds and the reduced Einstein flow, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 463-522 | DOI

[16] A. E. Fischer; V. Moncrief The reduced Einstein equations and the conformal volume collapse of 3-manifolds, Class. Quantum Gravity, Volume 18 (2001) no. 21, pp. 4493-4515 | DOI

[17] A. E. Fischer; V. Moncrief The phase portrait of the reduced Einstein equations, Int. J. Mod. Phys. D, Volume 10 (2001), pp. 825-831 (Selected papers for the Gravity Research Foundation Annual Essay Competition 2001) | DOI

[18] A. E. Fischer; V. Moncrief Hamiltonian reduction, the Einstein flow, and collapse of 3-manifolds, Nucl. Phys. B Proc. Suppl., Volume 88 (2000), pp. 83-102 Constrained dynamics and quantum gravity, 1999 (Villasimius) | DOI

[19] A. E. Fischer; V. Moncrief Hamiltonian reduction of Einstein’s equations and the geometrization of three-manifolds, International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Scientific Publishing, River Edge, NJ, 2000, pp. 279-282

[20] A. E. Fischer; V. Moncrief The reduced Hamiltonian of general relativity and the σ-constant of conformal geometry, Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998) (Lecture Notes in Physics), Volume 537, Springer, Berlin, 2000, pp. 70-101 | DOI

[21] A. E. Fischer; V. Moncrief The Einstein flow, the σ-constant and the geometrization of 3-manifolds, Class. Quantum Gravity, Volume 16 (1999) no. 11, p. L79-L87 | DOI

[22] A. E. Fischer; V. Moncrief Hamiltonian reduction of Einstein’s equations of general relativity, Nucl. Phys. B Proc. Suppl., Volume 57 (1997), pp. 142-161 Constrained dynamics and quantum gravity 1996 (Santa Margherita Ligure) | DOI

[23] M. T. Anderson Asymptotic behaviour of future-complete cosmological spacetimes, Class. Quantum Gravity, Volume 21 (2004), p. S11-S27 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI

[24] M. T. Anderson On long-time evolution in general relativity and geometrization of 3-manifolds, Commun. Math. Phys., Volume 222 (2001) no. 3, pp. 533-567 | DOI

[25] H. Andréasson; H. Ringström Proof of the cosmic no-hair conjecture in the 𝕋 3 -Gowdy symmetric Einstein–Vlasov setting, J. Eur. Math. Soc. (JEMS), Volume 18 (2016) no. 7, pp. 1565-1650 | DOI

[26] E. M. Lifshitz; I. M. Khalatnikov Investigations in relativistic cosmology, Adv. Phys., Volume 12 (1963) no. 46, pp. 185-249

[27] E. M. Lifshitz; I. M. Khalatnikov Problems of relativistic cosmology, Sov. Phys. Uspekhi, Volume 6 (1964) no. 4, pp. 495-522

[28] V. A. Belinskii; E. M. Lifshitz; I. M. Khalatnikov Oscillatory approach to the singular point in relativistic cosmology, Uspehi fiziceskih nauk, Volume 102 (1970) no. 11, pp. 463-500

[29] I. M. Khalatnikov; E. M. Lifshitz General cosmological solution of the gravitational equations with a singularity in time, Phys. Rev. Lett., Volume 24 (1970) no. 2, pp. 76-79

[30] V. A. Belinskii; I. M. Khalatnikov; E. M. Lifshitz Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys., Volume 19 (1970) no. 80, pp. 525-573

[31] V. A. Belinskii; I. M. Khalatnikov; E. M. Lifshitz A general solution of the Einstein equations with a time singularity, Adv. Phys., Volume 31 (1982) no. 6, pp. 639-667

[32] D. Eardley; E. Liang; R. Sachs Velocity-dominated singularities in irrotational dust cosmologies, J. Math. Phys., Volume 13 (1972), pp. 99-106

[33] J. Isenberg; V. Moncrief Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes, Ann. Phys., Volume 199 (1990) no. 1, pp. 84-122 | DOI

[34] T. Damour; M. Henneaux; H. Nicolai Cosmological billiards, Class. Quantum Gravity, Volume 20 (2003) no. 9, p. R145-R200 | DOI

[35] T. Damour; H. Nicolai Higher-order M-theory corrections and the Kac-Moody algebra E 10 , Class. Quantum Gravity, Volume 22 (2005) no. 14, pp. 2849-2879 | DOI

[36] J. M. Heinzle; C. Uggla; N. Röhr The cosmological billiard attractor, Adv. Theor. Math. Phys., Volume 13 (2009) no. 2, pp. 293-407 http://projecteuclid.org/euclid.atmp/1234881637

[37] J. M. Heinzle; C. Uggla; W. C. Lim Spike oscillations, Phys. Rev. D, Volume 86 (2012) no. 10, 104049

[38] J. Lott Kasner-like regions near crushing singularities, Class. Quantum Gravity, Volume 38 (2021) no. 5, 055005 | DOI

[39] J. Lott On the initial geometry of a vacuum cosmological spacetime, Class. Quantum Gravity, Volume 37 (2020) no. 8, 085017 | DOI

[40] H. Ringström On the geometry of silent and anisotropic big bang singularities, preprint, 2024 | arXiv

[41] L. Andersson; A. D. Rendall Quiescent cosmological singularities, Commun. Math. Phys., Volume 218 (2001) no. 3, pp. 479-511 | DOI

[42] J. D. Barrow Quiescent cosmology, Nature, Volume 272 (1978), pp. 211-215

[43] J. Demaret; M. Henneaux; P. Spindel Nonoscillatory behaviour in vacuum Kaluza–Klein cosmologies, Phys. Lett. B, Volume 164 (1985) no. 1-3, pp. 27-30 | DOI

[44] T. Damour; M. Henneaux; A. D. Rendall; M. Weaver Kasner-like behaviour for subcritical Einstein-matter systems, Ann. Henri Poincaré, Volume 3 (2002) no. 6, pp. 1049-1111 | DOI

[45] S. Kichenassamy; A. D. Rendall Analytic description of singularities in Gowdy spacetimes, Class. Quantum Gravity, Volume 15 (1998) no. 5, pp. 1339-1355 | DOI

[46] J. Isenberg; S. Kichenassamy Asymptotic behavior in polarized T 2 -symmetric vacuum space-times, J. Math. Phys., Volume 40 (1999) no. 1, pp. 340-352 | DOI

[47] A. D. Rendall Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity, Class. Quantum Gravity, Volume 17 (2000) no. 16, pp. 3305-3316 | DOI

[48] K. Anguige; K. P. Tod Isotropic cosmological singularities. I. Polytropic perfect fluid spacetimes, Ann. Phys., Volume 276 (1999) no. 2, pp. 257-293 | DOI

[49] F. Ståhl Fuchsian analysis of S 2 × S 1 and S 3 Gowdy spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 17, pp. 4483-4504 | DOI

[50] E. Ames; F. Beyer; J. Isenberg; P. G. LeFloch Quasilinear hyperbolic Fuchsian systems and AVTD behavior in T 2 -symmetric vacuum spacetimes, Ann. Henri Poincaré, Volume 14 (2013) no. 6, pp. 1445-1523 | DOI

[51] E. Ames; F. Beyer; J. Isenberg; P. G. LeFloch A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges, J. Geom. Phys., Volume 121 (2017), pp. 42-71 | DOI

[52] J. Isenberg; V. Moncrief Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 21, pp. 5361-5386 | DOI

[53] Y. Choquet-Bruhat; J. Isenberg; V. Moncrief Topologically general U(1) symmetric vacuum space-times with AVTD behavior, Nuovo Cimento Soc. Ital. Fis. B, Volume 119 (2004) no. 7-9, pp. 625-638

[54] P. Klinger A new class of asymptotically non-chaotic vacuum singularities, Ann. Phys., Volume 363 (2015), pp. 1-35 | DOI

[55] G. Fournodavlos; J. Luk Asymptotically Kasner-like singularities, Am. J. Math., Volume 145 (2023) no. 4, pp. 1183-1272 | DOI

[56] H. Ringström Initial data on big bang singularities, preprint, 2022 | arXiv

[57] H. Ringström Initial data on big bang singularities in symmetric settings, Pure Appl. Math. Q, Volume 20 (2024) no. 4, pp. 1505-1539 | DOI

[58] A. Franco-Grisales Developments of initial data on big bang singularities for the Einstein-nonlinear scalar field equations, preprint, 2024 | arXiv

[59] L. Andersson; G. J. Galloway; R. Howard The cosmological time function, Class. Quantum Gravity, Volume 15 (1998) no. 2, pp. 309-322 | DOI

[60] G. F. R. Ellis; M. A. H. MacCallum A class of homogeneous cosmological models, Commun. Math. Phys., Volume 12 (1969), pp. 108-141 http://projecteuclid.org/euclid.cmp/1103841345

[61] A. Krasiński; C. G. Behr; E. Schücking; F. B. Estabrook; H. D. Wahlquist; G. F. R. Ellis; R. Jantzen; W. Kundt The Bianchi classification in the Schücking–Behr approach, Gen. Relativ. Gravit., Volume 35 (2003) no. 3, pp. 475-489 | DOI

[62] J. Wainwright; L. Hsu A dynamical systems approach to Bianchi cosmologies: orthogonal models of class A, Class. Quantum Gravity, Volume 6 (1989) no. 10, pp. 1409-1431 | DOI

[63] C. G. Hewitt; J. Wainwright A dynamical systems approach to Bianchi cosmologies: orthogonal models of class B, Class. Quantum Gravity, Volume 10 (1993) no. 1, pp. 99-124 | DOI

[64] Dynamical Systems in Cosmology (J. Wainwright; G. F. R. Ellis, eds.), Cambridge University Press, Cambridge, 1997, xiv+343 pages (Papers from the workshop held in Cape Town, June 27–July 2, 1994) | DOI

[65] O. I. Bogoyavlensky Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, ix+301 pages (Translated from the Russian by Dmitry Gokhman) | DOI

[66] C. W. Misner Mixmaster Universe, Phys. Rev. Lett., Volume 22 (1969), pp. 1071-1074

[67] C. W. Misner; A. Taub A singularity-free empty universe, Sov. Phys. JETP, Volume 28 (1969), pp. 122-133

[68] P. T. Chruściel; J. Isenberg Nonisometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes, Phys. Rev. D (3), Volume 48 (1993) no. 4, pp. 1616-1628 | DOI

[69] H. Ringström The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2009, xiv+294 pages | DOI

[70] H. Ringström Curvature blow up in Bianchi VIII and IX vacuum spacetimes, Class. Quantum Gravity, Volume 17 (2000) no. 4, pp. 713-731 | DOI

[71] H. Ringström The Bianchi IX attractor, Ann. Henri Poincaré, Volume 2 (2001) no. 3, pp. 405-500 | DOI

[72] J. M. Heinzle; C. Uggla Mixmaster: fact and belief, Class. Quantum Gravity, Volume 26 (2009) no. 7, 075016 | DOI

[73] J. M. Heinzle; C. Uggla A new proof of the Bianchi type IX attractor theorem, Class. Quantum Gravity, Volume 26 (2009) no. 7, 075015 | DOI

[74] B. Brehm Bianchi VIII and IX vacuum cosmologies: Almost every solution forms particle horizons and converges to the Mixmaster attractor, preprint, 2016 | arXiv

[75] F. Béguin Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes, Class. Quantum Gravity, Volume 27 (2010) no. 18, 185005 | DOI

[76] S. Liebscher; J. Härterich; K. Webster; M. Georgi Ancient dynamics in Bianchi models: approach to periodic cycles, Commun. Math. Phys., Volume 305 (2011) no. 1, pp. 59-83 | DOI

[77] M. Reiterer; E. Trubowitz The BKL conjectures for spatially homogeneous spacetimes, preprint, 2010 | arXiv

[78] S. Liebscher; A. D. Rendall; S. B. Tchapnda Oscillatory singularities in Bianchi models with magnetic fields, Ann. Henri Poincaré, Volume 14 (2013) no. 5, pp. 1043-1075 | DOI

[79] F. Béguin; T. Dutilleul Chaotic dynamics of spatially homogeneous spacetimes, Commun. Math. Phys., Volume 399 (2023) no. 2, pp. 737-927 | DOI

[80] C. G. Hewitt; J. T. Horwood; J. Wainwright Asymptotic dynamics of the exceptional Bianchi cosmologies, Class. Quantum Gravity, Volume 20 (2003) no. 9, pp. 1743-1756 | DOI

[81] M. Weaver Dynamics of magnetic Bianchi VI 0 cosmologies, Class. Quantum Gravity, Volume 17 (2000) no. 2, pp. 421-434 | DOI

[82] S. Calogero; J. M. Heinzle Oscillations toward the singularity of locally rotationally symmetric Bianchi type IX cosmological models with Vlasov matter, SIAM J. Appl. Dyn. Syst., Volume 9 (2010) no. 4, pp. 1244-1262 | DOI

[83] A. D. Rendall Global dynamics of the mixmaster model, Class. Quantum Gravity, Volume 14 (1997) no. 8, pp. 2341-2356 | DOI

[84] K. Radermacher Strong cosmic censorship in orthogonal Bianchi class B perfect fluids and vacuum models, Ann. Henri Poincaré, Volume 20 (2019) no. 3, pp. 689-796 | DOI

[85] H. O. Groeniger On Bianchi type VI 0 spacetimes with orthogonal perfect fluid matter, Ann. Henri Poincaré, Volume 21 (2020) no. 9, pp. 3069-3094 | DOI

[86] K. Radermacher Orthogonal Bianchi B stiff fluids close to the initial singularity, preprint, 2017 | arXiv

[87] H. O. Groeniger Quiescence for the exceptional Bianchi cosmologies, preprint, 2023 | arXiv

[88] J. D. Barrow; G. J. Galloway; F. J. Tipler The closed-universe recollapse conjecture, Mon. Not. R. Astron. Soc., Volume 223 (1986), pp. 835-844

[89] X.-F. Lin; R. M. Wald Proof of the closed-universe-recollapse conjecture for diagonal Bianchi type-IX cosmologies, Phys. Rev. D (3), Volume 40 (1989) no. 10, pp. 3280-3286 | DOI

[90] H. Ringström The future asymptotics of Bianchi VIII vacuum solutions, Class. Quantum Gravity, Volume 18 (2001) no. 18, pp. 3791-3823 | DOI

[91] H. Ringström Future asymptotic expansions of Bianchi VIII vacuum metrics, Class. Quantum Gravity, Volume 20 (2003) no. 11, pp. 1943-1989 | DOI

[92] J. M. Heinzle; H. Ringström Future asymptotics of vacuum Bianchi type VI 0 solutions, Class. Quantum Gravity, Volume 26 (2009) no. 14, 145001 | DOI

[93] J. Ehlers; P. Geren; R. K. Sachs Isotropic solutions of the Einstein–Liouville equations, J. Math. Phys., Volume 9 (1968) no. 9, pp. 1344-1349

[94] J. Wainwright; M. J. Hancock; C. Uggla Asymptotic self-similarity breaking at late times in cosmology, Class. Quantum Gravity, Volume 16 (1999) no. 8, pp. 2577-2598 | DOI

[95] U. S. Nilsson; C. Uggla; J. Wainwright; W. C. Lim An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe, Astrophys. J., Volume 522 (1999) no. 1, p. L1-L3

[96] U. S. Nilsson; M. J. Hancock; J. Wainwright Non-tilted Bianchi VII 0 models—the radiation fluid, Class. Quantum Gravity, Volume 17 (2000) no. 16, pp. 3119-3134 | DOI

[97] H. Lee; E. Nungesser; J. Stalker On almost Ehlers–Geren–Sachs theorems, Class. Quantum Gravity, Volume 39 (2022) no. 10, 105006 | DOI

[98] J. D. Barrow; S. Hervik The future of tilted Bianchi universes, Class. Quantum Gravity, Volume 20 (2003) no. 13, pp. 2841-2854 | DOI

[99] S. Hervik The asymptotic behaviour of tilted Bianchi type VI 0 universes, Class. Quantum Gravity, Volume 21 (2004) no. 9, pp. 2301-2317 | DOI

[100] A. A. Coley; S. Hervik Bianchi cosmologies: a tale of two tilted fluids, Class. Quantum Gravity, Volume 21 (2004) no. 17, pp. 4193-4207 | DOI

[101] S. Hervik; R. van den Hoogen; A. Coley Future asymptotic behaviour of tilted Bianchi models of type IV and VII h , Class. Quantum Gravity, Volume 22 (2005) no. 3, pp. 607-633 | DOI

[102] S. Hervik; R. J. van den Hoogen; W. C. Lim; A. A. Coley Late-time behaviour of the tilted Bianchi type VI h models, Class. Quantum Gravity, Volume 24 (2007) no. 15, pp. 3859-3895 | DOI

[103] S. Hervik; R. J. van den Hoogen; W. C. Lim; A. A. Coley Late-time behaviour of the tilted Bianchi type VI -1/9 models, Class. Quantum Gravity, Volume 25 (2008) no. 1, 015002 | DOI

[104] A. A. Coley; S. Hervik A note on tilted Bianchi type VI h models: the type III bifurcation, Class. Quantum Gravity, Volume 25 (2008) no. 19, 198001 | DOI

[105] S. Hervik; W. C. Lim; P. Sandin; C. Uggla Future asymptotics of tilted Bianchi type II cosmologies, Class. Quantum Gravity, Volume 27 (2010) no. 18, 185006 | DOI

[106] A. D. Rendall; C. Uggla Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein–Vlasov equations, Class. Quantum Gravity, Volume 17 (2000) no. 22, pp. 4697-4713 | DOI

[107] E. Nungesser Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter at late times assuming small data, Class. Quantum Gravity, Volume 27 (2010) no. 23, 235025 | DOI

[108] E. Nungesser Future non-linear stability for reflection symmetric solutions of the Einstein–Vlasov system of Bianchi types II and VI 0 , Ann. Henri Poincaré, Volume 14 (2013) no. 4, pp. 967-999 | DOI

[109] H. Lee Asymptotic behaviour of the relativistic Boltzmann equation in the Robertson–Walker spacetime, J. Differ. Equ., Volume 255 (2013) no. 11, pp. 4267-4288 | DOI

[110] H. Lee Global solutions of the Vlasov–Poisson–Boltzmann system in a cosmological setting, J. Math. Phys., Volume 54 (2013) no. 7, 073302 | DOI

[111] R. M. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D (3), Volume 28 (1983) no. 8, pp. 2118-2120 | DOI

[112] H. Lee Asymptotic behaviour of the Einstein–Vlasov system with a positive cosmological constant, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 2, pp. 495-509 | DOI

[113] A. D. Rendall Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound, Class. Quantum Gravity, Volume 21 (2004) no. 9, pp. 2445-2454 | DOI

[114] A. D. Rendall Intermediate inflation and the slow-roll approximation, Class. Quantum Gravity, Volume 22 (2005) no. 9, pp. 1655-1666 | DOI

[115] A. D. Rendall Dynamics of k-essence, Class. Quantum Gravity, Volume 23 (2006) no. 5, pp. 1557-1569 | DOI

[116] J. Isenberg; V. Moncrief The existence of constant mean curvature foliations of Gowdy 3-torus spacetimes, Commun. Math. Phys., Volume 86 (1982) no. 4, pp. 485-493 http://projecteuclid.org/euclid.cmp/1103921839

[117] P. T. Chruściel On space-times with U(1) × U(1) symmetric compact Cauchy surfaces, Ann. Phys., Volume 202 (1990) no. 1, pp. 100-150 | DOI

[118] P. T. Chruściel On Uniqueness in the Large of Solutions of Einstein’s Equations (“Strong Cosmic Censorship”), Proceedings of the Centre for Mathematics and its Applications, Australian National University, 27, Australian National University, Centre for Mathematics and its Applications, Canberra, 1991, 130 pages

[119] A. D. Rendall Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Gravity, Volume 12 (1995) no. 6, pp. 1517-1533 | DOI

[120] A. D. Rendall Constant mean curvature foliations in cosmological space-times, Helv. Phys. Acta, Volume 69 (1996), pp. 490-500 Journées Relativistes 96, Part II (Ascona, 1996)

[121] B. K. Berger; P. T. Chruściel; J. Isenberg; V. Moncrief Global foliations of vacuum spacetimes with T 2 isometry, Ann. Phys., Volume 260 (1997) no. 1, pp. 117-148 | DOI

[122] A. D. Rendall Existence and non-existence results for global constant mean curvature foliations, Nonlinear Anal., Volume 30 (1997) no. 6, pp. 3589-3598 | DOI

[123] A. D. Rendall Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry, Commun. Math. Phys., Volume 189 (1997) no. 1, pp. 145-164 | DOI

[124] H. Andréasson Global foliations of matter spacetimes with Gowdy symmetry, Commun. Math. Phys., Volume 206 (1999) no. 2, pp. 337-365 | DOI

[125] J. Isenberg; M. Weaver On the area of the symmetry orbits in T 2 symmetric spacetimes, Class. Quantum Gravity, Volume 20 (2003) no. 16, pp. 3783-3796 | DOI

[126] H. Andréasson; G. Rein; A. D. Rendall On the Einstein–Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 134 (2003) no. 3, pp. 529-549 | DOI

[127] H. Andréasson; A. D. Rendall; M. Weaver Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter, Commun. Partial Differ. Equ., Volume 29 (2004) no. 1-2, pp. 237-262 | DOI

[128] P. S. Mostert On a compact Lie group acting on a manifold, Ann. Math. (2), Volume 65 (1957), pp. 447-455 | DOI

[129] P. S. Mostert Errata, “On a compact Lie group acting on a manifold”, Ann. Math. (2), Volume 66 (1957), p. 589 | DOI

[130] R. H. Gowdy Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions, Ann. Phys., Volume 83 (1974), pp. 203-241 | DOI

[131] M. Tanimoto Locally U(1) × U(1) symmetric cosmological models: topology and dynamics, Class. Quantum Gravity, Volume 18 (2001) no. 3, pp. 479-507 | DOI

[132] P. T. Chruściel; J. Isenberg; V. Moncrief Strong cosmic censorship in polarised Gowdy spacetimes, Class. Quantum Gravity, Volume 7 (1990) no. 10, pp. 1671-1680 | DOI

[133] H. Ringström On a wave map equation arising in general relativity, Commun. Pure Appl. Math., Volume 57 (2004) no. 5, pp. 657-703 | DOI

[134] H. Ringström On Gowdy vacuum spacetimes, Math. Proc. Camb. Philos. Soc., Volume 136 (2004) no. 2, pp. 485-512 | DOI

[135] H. Ringström Asymptotic expansions close to the singularity in Gowdy spacetimes, Class. Quantum Gravity, Volume 21 (2004), p. S305-S322 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI

[136] H. Ringström Existence of an asymptotic velocity and implications for the asymptotic behavior in the direction of the singularity in T 3 -Gowdy, Commun. Pure Appl. Math., Volume 59 (2006) no. 7, pp. 977-1041 | DOI

[137] H. Ringström Strong cosmic censorship in T 3 -Gowdy spacetimes, Ann. Math. (2), Volume 170 (2009) no. 3, pp. 1181-1240 | DOI

[138] E. Nungesser; A. D. Rendall Strong cosmic censorship for solutions of the Einstein–Maxwell field equations with polarized Gowdy symmetry, Class. Quantum Gravity, Volume 26 (2009) no. 10, 105019 | DOI

[139] A. D. Rendall; M. Weaver Manufacture of Gowdy spacetimes with spikes, Class. Quantum Gravity, Volume 18 (2001) no. 15, pp. 2959-2975 | DOI

[140] W. C. Lim New explicit spike solutions—non-local component of the generalized mixmaster attractor, Class. Quantum Gravity, Volume 25 (2008) no. 4, 045014 | DOI

[141] M. Dafermos; A. D. Rendall Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter, Commun. Pure Appl. Math., Volume 69 (2016) no. 5, pp. 815-908 | DOI

[142] G. Rein Cosmological solutions of the Vlasov–Einstein system with spherical, plane, and hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 119 (1996) no. 4, pp. 739-762 | DOI

[143] D. Tegankong; A. D. Rendall On the nature of initial singularities for solutions of the Einstein–Vlasov-scalar field system with surface symmetry, Math. Proc. Camb. Philos. Soc., Volume 141 (2006) no. 3, pp. 547-562 | DOI

[144] M. Dafermos; A. D. Rendall Inextendibility of expanding cosmological models with symmetry, Class. Quantum Gravity, Volume 22 (2005) no. 23, p. L143-L147 | DOI

[145] M. Dafermos; A. D. Rendall Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter, Commun. Pure Appl. Math., Volume 69 (2016) no. 5, pp. 815-908 | DOI

[146] J. Smulevici Strong cosmic censorship for T 2 -symmetric spacetimes with cosmological constant and matter, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1425-1453 | DOI

[147] W. Li BKL bounces outside homogeneity: Gowdy symmetric spacetimes, preprint, 2024 | arXiv

[148] T. Jurke On future asymptotics of polarized Gowdy T 3 -models, Class. Quantum Gravity, Volume 20 (2003) no. 1, pp. 173-191 | DOI

[149] H. Ringström Data at the moment of infinite expansion for polarized Gowdy, Class. Quantum Gravity, Volume 22 (2005) no. 9, pp. 1647-1653 | DOI

[150] H. Ringström Linear systems of wave equations on cosmological backgrounds with convergent asymptotics, Astérisque, Volume 420 (2020), p. xi + 510 | DOI

[151] H. Ringström On curvature decay in expanding cosmological models, Commun. Math. Phys., Volume 264 (2006) no. 3, pp. 613-630 | DOI

[152] H. Ringström Instability of spatially homogeneous solutions in the class of 𝕋 2 -symmetric solutions to Einstein’s vacuum equations, Commun. Math. Phys., Volume 334 (2015) no. 3, pp. 1299-1375 | DOI

[153] P. LeFloch; J. Smulevici Future asymptotics and geodesic completeness of polarized T 2 -symmetric spacetimes, Anal. PDE, Volume 9 (2016) no. 2, pp. 363-395 | DOI

[154] G. Rein On future geodesic completeness for the Einstein–Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 1, pp. 237-244 | DOI

[155] S. B. Tchapnda; A. D. Rendall Global existence and asymptotic behaviour in the future for the Einstein–Vlasov system with positive cosmological constant, Class. Quantum Gravity, Volume 20 (2003) no. 14, pp. 3037-3049 | DOI

[156] S. B. N. Tchapnda; N. Noutchegueme The surface-symmetric Einstein–Vlasov system with cosmological constant, Math. Proc. Camb. Philos. Soc., Volume 138 (2005) no. 3, pp. 541-553 | DOI

[157] K. Anguige; K. P. Tod Isotropic cosmological singularities and the Einstein–Vlasov equations, Nonlinear Anal., Volume 30 (1997) no. 6, pp. 3599-3603 | DOI

[158] K. Anguige; K. P. Tod Isotropic cosmological singularities. II. The Einstein–Vlasov system, Ann. Phys., Volume 276 (1999) no. 2, pp. 294-320 | DOI

[159] K. Anguige Isotropic cosmological singularities. III. The Cauchy problem for the inhomogeneous conformal Einstein–Vlasov equations, Ann. Phys., Volume 282 (2000) no. 2, pp. 395-419 | DOI

[160] K. Anguige A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity, Class. Quantum Gravity, Volume 17 (2000) no. 10, pp. 2117-2128 | DOI

[161] V. Moncrief Reflections on the U(1) problem in general relativity, J. Fixed Point Theory Appl., Volume 14 (2013) no. 2, pp. 397-418 | DOI

[162] V. Moncrief Reduction of the Einstein–Maxwell and Einstein–Maxwell–Higgs equations for cosmological spacetimes with spacelike U(1) isometry groups, Class. Quantum Gravity, Volume 7 (1990) no. 3, pp. 329-352 | DOI

[163] Y. Choquet-Bruhat; V. Moncrief An existence theorem for the reduced Einstein equation, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 153-159

[164] Y. Choquet-Bruhat; V. Moncrief Existence theorem for solutions of Einstein’s equations with 1 parameter spacelike isometry groups, Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994) (Proceedings of Symposia in Pure Mathematics), Volume 59, American Mathematical Society, Providence, RI, 1996, pp. 67-80 | DOI

[165] Y. Choquet-Bruhat; V. Moncrief Future complete Einsteinian space times with U(1) isometry group, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 2, pp. 137-144 | DOI

[166] Y. Choquet-Bruhat; V. Moncrief Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, Volume 2 (2001) no. 6, pp. 1007-1064 | DOI

[167] Y. Choquet-Bruhat; V. Moncrief Nonlinear stability of an expanding universe with the S 1 isometry group, Partial Differential Equations and Mathematical Physics (Tokyo, 2001) (Progress in Nonlinear Differential Equations and Their Applications), Volume 52, Birkhäuser, Boston, MA, 2003, pp. 57-71

[168] Y. Choquet-Bruhat Future complete S 1 symmetric Einsteinian spacetimes, the unpolarized case, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 2, pp. 129-136 | DOI

[169] Y. Choquet-Bruhat Future complete U(1) symmetric Einsteinian spacetimes, the unpolarized case, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, 2004

[170] L. Andersson; V. Moncrief Future complete vacuum spacetimes, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, 2004, pp. 299-330

[171] L. Andersson; V. Moncrief Einstein spaces as attractors for the Einstein flow, J. Differ. Geom., Volume 89 (2011) no. 1, pp. 1-47 http://projecteuclid.org/euclid.jdg/1324476750

[172] L. Andersson; D. Fajman Nonlinear stability of the Milne model with matter, Commun. Math. Phys., Volume 378 (2020) no. 1, pp. 261-298 | DOI

[173] D. Fajman; Z. Wyatt Attractors of the Einstein–Klein-Gordon system, Commun. Partial Differ. Equ., Volume 46 (2021) no. 1, pp. 1-30 | DOI

[174] J. Wang Future stability of the 1 + 3 Milne model for the Einstein–Klein-Gordon system, Class. Quantum Gravity, Volume 36 (2019) no. 22, 225010 | DOI

[175] H. Friedrich On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609 http://projecteuclid.org/euclid.cmp/1104116232

[176] H. Friedrich On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations, J. Differ. Geom., Volume 34 (1991) no. 2, pp. 275-345 http://projecteuclid.org/euclid.jdg/1214447211

[177] H. Friedrich Smooth non-zero rest-mass evolution across time-like infinity, Ann. Henri Poincaré, Volume 16 (2015) no. 10, pp. 2215-2238 | DOI

[178] H. Friedrich Sharp asymptotics for Einstein-λ-dust flows, Commun. Math. Phys., Volume 350 (2017) no. 2, pp. 803-844 | DOI

[179] C. Lübbe; J. A. Valiente Kroon A conformal approach for the analysis of the non-linear stability of radiation cosmologies, Ann. Phys., Volume 328 (2013), pp. 1-25 | DOI

[180] H. Ringström Future stability of the Einstein-non-linear scalar field system, Invent. Math., Volume 173 (2008) no. 1, pp. 123-208 | DOI

[181] H. Ringström Power law inflation, Commun. Math. Phys., Volume 290 (2009) no. 1, pp. 155-218 | DOI

[182] C. Svedberg Future stability of the Einstein–Maxwell-scalar field system, Ann. Henri Poincaré, Volume 12 (2011) no. 5, pp. 849-917 | DOI

[183] J. Speck The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Selecta Math. (N.S.), Volume 18 (2012) no. 3, pp. 633-715 | DOI

[184] X. Luo; J. Isenberg Power law inflation with electromagnetism, Ann. Phys., Volume 334 (2013), pp. 420-454 | DOI

[185] I. Rodnianski; J. Speck The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc. (JEMS), Volume 15 (2013) no. 6, pp. 2369-2462 | DOI

[186] H. Ringström On the Topology and Future Stability of the Universe, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013, xiv+718 pages | DOI

[187] M. Hadžić; J. Speck The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant, J. Hyperbolic Differ. Equ., Volume 12 (2015) no. 1, pp. 87-188 | DOI

[188] T. A. Oliynyk Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., Volume 346 (2016) no. 1, pp. 293-312 | DOI

[189] C. Liu; T. A. Oliynyk Cosmological Newtonian limits on large spacetime scales, Commun. Math. Phys., Volume 364 (2018) no. 3, pp. 1195-1304 | DOI

[190] C. Liu; T. A. Oliynyk Newtonian limits of isolated cosmological systems on long time scales, Ann. Henri Poincaré, Volume 19 (2018) no. 7, pp. 2157-2243 | DOI

[191] C. Liu; C. Wei Future stability of the FLRW spacetime for a large class of perfect fluids, Ann. Henri Poincaré, Volume 22 (2021) no. 3, pp. 715-770 | DOI

[192] I. Rodnianski; J. Speck Stable big bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems, Selecta Math. (N.S.), Volume 24 (2018) no. 5, pp. 4293-4459 | DOI

[193] I. Rodnianski; J. Speck A regime of linear stability for the Einstein-scalar field system with applications to nonlinear big bang formation, Ann. Math. (2), Volume 187 (2018) no. 1, pp. 65-156 | DOI

[194] J. Speck The maximal development of near-FLRW data for the Einstein-scalar field system with spatial topology 𝕊 3 , Commun. Math. Phys., Volume 364 (2018) no. 3, pp. 879-979 | DOI

[195] D. Fajman; L. Urban Cosmic Censorship near FLRW spacetimes with negative spatial curvature, preprint, 2023 | arXiv

[196] I. Rodnianski; J. Speck On the nature of Hawking’s incompleteness for the Einstein-vacuum equations: the regime of moderately spatially anisotropic initial data, J. Eur. Math. Soc. (JEMS), Volume 24 (2022) no. 1, pp. 167-263 | DOI

[197] F. Beyer; T. A. Oliynyk Localized big bang stability for the Einstein-scalar field equations, Arch. Ration. Mech. Anal., Volume 248 (2024) no. 1, 3 | DOI

[198] F. Beyer; T. A. Oliynyk Past stability of FLRW solutions to the Einstein-Euler-scalar field equations and their big bang singularites, preprint, 2023 | arXiv

[199] F. Beyer; E. Marshall; T. A. Oliynyk Past instability of FLRW solutions of the Einstein–Euler-scalar field equations for linear equations of state p = Kρ with 0 K < 1/3, Phys. Rev. D, Volume 110 (2024) no. 4, 044060 | DOI

[200] D. Fajman; L. Urban On the past maximal development of near-FLRW data for the Einstein scalar-field Vlasov system, preprint, 2024 | arXiv

[201] G. Fournodavlos; I. Rodnianski; J. Speck Stable big bang formation for Einstein’s equations: the complete sub-critical regime, J. Amer. Math. Soc., Volume 36 (2023) no. 3, pp. 827-916 | DOI

[202] H. O. Groeniger; O. Petersen; H. Ringström Formation of quiescent big bang singularities, preprint, 2023 | arXiv

[203] S. Klainerman; P. Sarnak Explicit solutions of cmu = 0 on the Friedmann–Robertson–Walker space-times, Ann. Inst. Henri Poincaré Sect. A (N.S.), Volume 35 (1981) no. 4, pp. 253-257

[204] P. T. Allen; A. D. Rendall Asymptotics of linearized cosmological perturbations, J. Hyperbolic Differ. Equ., Volume 7 (2010) no. 2, pp. 255-277 | DOI

[205] A. Galstian; T. Kinoshita; K. Yagdjian A note on wave equation in Einstein and de Sitter space-time, J. Math. Phys., Volume 51 (2010) no. 5, 052501 | DOI

[206] A. Vasy The wave equation on asymptotically de Sitter-like spaces, Adv. Math., Volume 223 (2010) no. 1, pp. 49-97 | DOI

[207] O. L. Petersen The mode solution of the wave equation in Kasner spacetimes and redshift, Math. Phys. Anal. Geom., Volume 19 (2016) no. 4, 26 | DOI

[208] A. Alho; G. Fournodavlos; A. T. Franzen The wave equation near flat Friedmann–Lemaître–Robertson–Walker and Kasner Big Bang singularities, J. Hyperbolic Differ. Equ., Volume 16 (2019) no. 2, pp. 379-400 | DOI

[209] A. Bachelot-Motet; A. Bachelot Waves on accelerating dodecahedral universes, Class. Quantum Gravity, Volume 34 (2017) no. 5, 055010 | DOI

[210] P. M. Girão; J. Natário; J. D. Silva Solutions of the wave equation bounded at the big bang, Class. Quantum Gravity, Volume 36 (2019) no. 7, 075016 | DOI

[211] H. Ringström A unified approach to the Klein-Gordon equation on Bianchi backgrounds, Commun. Math. Phys., Volume 372 (2019) no. 2, pp. 599-656 | DOI

[212] A. Bachelot Wave asymptotics at a cosmological time-singularity: classical and quantum scalar fields, Commun. Math. Phys., Volume 369 (2019) no. 3, pp. 973-1020 | DOI

[213] A. Bachelot Propagation of massive scalar fields in pre-big bang cosmologies, Commun. Math. Phys., Volume 380 (2020) no. 2, pp. 973-1001 | DOI

[214] D. Fajman; L. Urban Blow-up of waves on singular spacetimes with generic spatial metrics, Lett. Math. Phys., Volume 112 (2022) no. 2, 42 | DOI

[215] H. Ringström Wave equations on silent big bang backgrounds, preprint, 2021 | arXiv

[216] G. Taujanskas Conformal scattering of the Maxwell-scalar field system on de Sitter space, J. Hyperbolic Differ. Equ., Volume 16 (2019) no. 4, pp. 743-791 | DOI

[217] A. F. Grisales Asymptotics of solutions to silent wave equations, preprint, 2023 | arXiv

[218] W. Li Scattering towards the singularity for the wave equation and the linearized Einstein-scalar field system in Kasner spacetimes, preprint, 2024 | arXiv

[219] S. Cicortas Scattering for the wave equation on de Sitter space in all even spatial dimensions, preprint, 2024 | arXiv

[220] B. K. Berger Numerical study of initially expanding mixmaster universes, Class. Quantum Gravity, Volume 7 (1990) no. 2, pp. 203-216 | DOI

[221] B. K. Berger; V. Moncrief Numerical investigation of cosmological singularities, Phys. Rev. D (3), Volume 48 (1993) no. 10, pp. 4676-4687 | DOI

[222] B. K. Berger; D. Garfinkle; E. Strasser New algorithm for Mixmaster dynamics, Class. Quantum Gravity, Volume 14 (1997) no. 2, p. L29-L36 | DOI

[223] B. K. Berger; D. Garfinkle; J. Isenberg; V. Moncrief; M. Weaver The singularity in generic gravitational collapse is spacelike, local and oscillatory, Modern Phys. Lett. A, Volume 13 (1998) no. 19, pp. 1565-1573 | DOI

[224] B. K. Berger; V. Moncrief Numerical evidence that the singularity in polarized U(1) symmetric cosmologies on T 3 ×R is velocity dominated, Phys. Rev. D (3), Volume 57 (1998) no. 12, pp. 7235-7240 | DOI

[225] B. K. Berger; D. Garfinkle Phenomenology of the Gowdy universe on T 3 ×R , Phys. Rev. D (3), Volume 57 (1998) no. 8, pp. 4767-4777 | DOI

[226] B. K. Berger; V. Moncrief Exact U(1) symmetric cosmologies with local mixmaster dynamics, Phys. Rev. D (3), Volume 62 (2000) no. 2, 023509 | DOI

[227] B. K. Berger; V. Moncrief Signature for local mixmaster dynamics in U(1) symmetric cosmologies, Phys. Rev. D (3), Volume 62 (2000) no. 12, 123501 | DOI

[228] B. K. Berger; J. Isenberg; M. Weaver Oscillatory approach to the singularity in vacuum spacetimes with T 2 isometry, Phys. Rev. D (3), Volume 64 (2001) no. 8, 084006 | DOI

[229] B. K. Berger Hunting local mixmaster dynamics in spatially inhomogeneous cosmologies, Class. Quantum Gravity, Volume 21 (2004), p. S81-S95 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI

[230] B. K. Berger; J. Isenberg; A. Layne Numerical study of the expanding direction of T 2 -symmetric spacetimes, Phys. Rev. D, Volume 108 (2023) no. 10, 104015 | DOI

[231] B. K. Berger; J. Isenberg; A. Layne Stability within T 2 -symmetric expanding spacetimes, Ann. Henri Poincaré, Volume 21 (2020) no. 3, pp. 675-703 | DOI

[232] D. Garfinkle; M. Weaver High velocity spikes in Gowdy spacetimes, Phys. Rev. D (3), Volume 67 (2003) no. 12, 124009 | DOI

[233] E. Nungesser; W. C. Lim The electromagnetic spike solutions, Class. Quantum Gravity, Volume 30 (2013) no. 23, 235020 | DOI

[234] A. A. Coley; W. C. Lim Spikes and matter inhomogeneities in massless scalar field models, Class. Quantum Gravity, Volume 33 (2016) no. 1, 015009 | DOI

[235] A. A. Coley; D. Gregoris; W. C. Lim On the first G 1 stiff fluid spike solution in general relativity, Class. Quantum Gravity, Volume 33 (2016) no. 21, 215010 | DOI

[236] D. Gregoris; W. C. Lim; A. A. Coley Stiff fluid spike solutions from Bianchi type V seed solutions, Class. Quantum Gravity, Volume 34 (2017) no. 23, 235013 | DOI

[237] W. C. Lim Numerical confirmations of joint spike transitions in G 2 cosmologies, Class. Quantum Gravity, Volume 39 (2022) no. 6, 065001 | DOI

[238] D. Garfinkle Simulations of generic singularities in harmonic coordinates, The Conformal Structure of Space-time (Lecture Notes in Physics), Volume 604, Springer, Berlin, 2002, pp. 349-358 | DOI

[239] D. Garfinkle Numerical simulations of generic singularities, Phys. Rev. Lett., Volume 93 (2004) no. 16, 161101 | DOI

[240] D. Garfinkle The nature of gravitational singularities, Int. J. Mod. Phys. D, Volume 13 (2004) no. 10, pp. 2261-2265 | DOI

[241] D. Garfinkle Numerical simulations of general gravitational singularities, Class. Quantum Gravity, Volume 24 (2007) no. 12, p. S295-S306 | DOI

[242] D. Garfinkle; F. Pretorius Spike behavior in the approach to spacetime singularities, Phys. Rev. D, Volume 102 (2020) no. 12, 124067 | DOI

[243] D. Garfinkle; A. Ijjas; P. J. Steinhardt Initial conditions problem in cosmological inflation revisited, Phys. Lett. B, Volume 843 (2023), 138028 | DOI

Cité par Sources :

Commentaires - Politique