[Cosmologie, big bang et conjecture BKL]
Il s’agit d’un article de revue sur les résultats mathématiques en cosmologie, écrit en l’honneur du 100ème anniversaire d’Yvonne Choquet-Bruhat. Il commence par une brève description de certaines questions essentielles : la censure cosmique forte, la relation entre l’asymptotique future et la géométrisation dans le cas du vide, la conjecture de l’absence de cheveux dans le cadre cosmique et la proposition BKL. Il aborde ensuite les résultats, en commençant par ceux obtenus dans des situations avec symétrie. Il se poursuit par un examen des résultats de stabilité future non linéaire globale, des résultats de formation stable du big bang, des résultats concernant les solutions d’équations linéaires sur les espaces-temps cosmologiques et des résultats numériques. L’article contient une liste substantielle, mais très incomplète, de références à la littérature.
This is a review article of mathematical results in cosmology, written in honor of Yvonne Choquet-Bruhat’s 100th birthday. It starts with a brief description of some of the essential questions: strong cosmic censorship; the relation between the future asymptotics and geometrization in the vacuum setting; the cosmic no-hair conjecture; and the BKL-proposal. It then turns to results, starting with ones obtained in situations with symmetry. It continues with a review of future global non-linear stability results, stable big bang formation results, results concerning solutions to linear equations on cosmological backgrounds and numerical results. The article contains a substantial, but very incomplete, list of references to the literature.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Analyse globale, Relativité générale, Géométrie lorentzienne, Équations d’évolution non linéaires, Cosmologie, Big bang et proposition BKL
Hans Ringström 1
@article{CRMECA_2025__353_G1_53_0, author = {Hans Ringstr\"om}, title = {Cosmology, the big bang and the {BKL} conjecture}, journal = {Comptes Rendus. M\'ecanique}, pages = {53--78}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.277}, language = {en}, }
Hans Ringström. Cosmology, the big bang and the BKL conjecture. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 53-78. doi : 10.5802/crmeca.277. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.277/
[1] Discovering the Expanding Universe, Cambridge University Press, Cambridge, 2009
[2] The occurrence of singularities in cosmology. I, Proc. R. Soc. Lond. A, Volume 294 (1966), pp. 511-521 | DOI
[3] The occurrence of singularities in cosmology. II, Proc. R. Soc. Lond. A, Volume 295 (1966), pp. 490-493 | DOI
[4] Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers ], New York, 1983, xiii+468 pages (With applications to relativity)
[5] A measurement of excess antenna temperature at 4080 Mc/s, Astrophys. J. Lett., Volume 142 (1965), pp. 419-421
[6] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI
[7] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 http://projecteuclid.org/euclid.cmp/1103841822
[8] Théorèmes d’existence en mécanique des fluides relativistes, Bull. Soc. Math. France, Volume 86 (1958), pp. 155-175
[9] Theorem of uniqueness and local stability for Liouville–Einstein equations, J. Math. Phys., Volume 11 (1970), pp. 3238-3243 | DOI
[10] Un théorème d’existence pour le système intégrodifférentiel d’Einstein–Liouville, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A625-A628
[11] Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville, Ann. Inst. Fourier (Grenoble), Volume 21 (1971) no. 3, pp. 181-201
[12] Existence, uniqueness, and local stability for the Einstein–Maxwell–Boltzman system, Commun. Math. Phys., Volume 33 (1973), pp. 83-96 http://projecteuclid.org/euclid.cmp/1103859246
[13] The global existence problem and cosmic censorship in general relativity, Gen. Relativ. Gravit., Volume 13 (1981) no. 9, pp. 887-892 | DOI
[14] Hamiltonian reduction and perturbations of continuously self-similar (n + 1)-dimensional Einstein vacuum spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 21, pp. 5557-5589 | DOI
[15] Conformal volume collapse of 3-manifolds and the reduced Einstein flow, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 463-522 | DOI
[16] The reduced Einstein equations and the conformal volume collapse of 3-manifolds, Class. Quantum Gravity, Volume 18 (2001) no. 21, pp. 4493-4515 | DOI
[17] The phase portrait of the reduced Einstein equations, Int. J. Mod. Phys. D, Volume 10 (2001), pp. 825-831 (Selected papers for the Gravity Research Foundation Annual Essay Competition 2001) | DOI
[18] Hamiltonian reduction, the Einstein flow, and collapse of 3-manifolds, Nucl. Phys. B Proc. Suppl., Volume 88 (2000), pp. 83-102 Constrained dynamics and quantum gravity, 1999 (Villasimius) | DOI
[19] Hamiltonian reduction of Einstein’s equations and the geometrization of three-manifolds, International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Scientific Publishing, River Edge, NJ, 2000, pp. 279-282
[20] The reduced Hamiltonian of general relativity and the -constant of conformal geometry, Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998) (Lecture Notes in Physics), Volume 537, Springer, Berlin, 2000, pp. 70-101 | DOI
[21] The Einstein flow, the -constant and the geometrization of 3-manifolds, Class. Quantum Gravity, Volume 16 (1999) no. 11, p. L79-L87 | DOI
[22] Hamiltonian reduction of Einstein’s equations of general relativity, Nucl. Phys. B Proc. Suppl., Volume 57 (1997), pp. 142-161 Constrained dynamics and quantum gravity 1996 (Santa Margherita Ligure) | DOI
[23] Asymptotic behaviour of future-complete cosmological spacetimes, Class. Quantum Gravity, Volume 21 (2004), p. S11-S27 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI
[24] On long-time evolution in general relativity and geometrization of 3-manifolds, Commun. Math. Phys., Volume 222 (2001) no. 3, pp. 533-567 | DOI
[25] Proof of the cosmic no-hair conjecture in the -Gowdy symmetric Einstein–Vlasov setting, J. Eur. Math. Soc. (JEMS), Volume 18 (2016) no. 7, pp. 1565-1650 | DOI
[26] Investigations in relativistic cosmology, Adv. Phys., Volume 12 (1963) no. 46, pp. 185-249
[27] Problems of relativistic cosmology, Sov. Phys. Uspekhi, Volume 6 (1964) no. 4, pp. 495-522
[28] Oscillatory approach to the singular point in relativistic cosmology, Uspehi fiziceskih nauk, Volume 102 (1970) no. 11, pp. 463-500
[29] General cosmological solution of the gravitational equations with a singularity in time, Phys. Rev. Lett., Volume 24 (1970) no. 2, pp. 76-79
[30] Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys., Volume 19 (1970) no. 80, pp. 525-573
[31] A general solution of the Einstein equations with a time singularity, Adv. Phys., Volume 31 (1982) no. 6, pp. 639-667
[32] Velocity-dominated singularities in irrotational dust cosmologies, J. Math. Phys., Volume 13 (1972), pp. 99-106
[33] Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes, Ann. Phys., Volume 199 (1990) no. 1, pp. 84-122 | DOI
[34] Cosmological billiards, Class. Quantum Gravity, Volume 20 (2003) no. 9, p. R145-R200 | DOI
[35] Higher-order M-theory corrections and the Kac-Moody algebra E, Class. Quantum Gravity, Volume 22 (2005) no. 14, pp. 2849-2879 | DOI
[36] The cosmological billiard attractor, Adv. Theor. Math. Phys., Volume 13 (2009) no. 2, pp. 293-407 http://projecteuclid.org/euclid.atmp/1234881637
[37] Spike oscillations, Phys. Rev. D, Volume 86 (2012) no. 10, 104049
[38] Kasner-like regions near crushing singularities, Class. Quantum Gravity, Volume 38 (2021) no. 5, 055005 | DOI
[39] On the initial geometry of a vacuum cosmological spacetime, Class. Quantum Gravity, Volume 37 (2020) no. 8, 085017 | DOI
[40] On the geometry of silent and anisotropic big bang singularities, preprint, 2024 | arXiv
[41] Quiescent cosmological singularities, Commun. Math. Phys., Volume 218 (2001) no. 3, pp. 479-511 | DOI
[42] Quiescent cosmology, Nature, Volume 272 (1978), pp. 211-215
[43] Nonoscillatory behaviour in vacuum Kaluza–Klein cosmologies, Phys. Lett. B, Volume 164 (1985) no. 1-3, pp. 27-30 | DOI
[44] Kasner-like behaviour for subcritical Einstein-matter systems, Ann. Henri Poincaré, Volume 3 (2002) no. 6, pp. 1049-1111 | DOI
[45] Analytic description of singularities in Gowdy spacetimes, Class. Quantum Gravity, Volume 15 (1998) no. 5, pp. 1339-1355 | DOI
[46] Asymptotic behavior in polarized T-symmetric vacuum space-times, J. Math. Phys., Volume 40 (1999) no. 1, pp. 340-352 | DOI
[47] Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity, Class. Quantum Gravity, Volume 17 (2000) no. 16, pp. 3305-3316 | DOI
[48] Isotropic cosmological singularities. I. Polytropic perfect fluid spacetimes, Ann. Phys., Volume 276 (1999) no. 2, pp. 257-293 | DOI
[49] Fuchsian analysis of S S and S Gowdy spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 17, pp. 4483-4504 | DOI
[50] Quasilinear hyperbolic Fuchsian systems and AVTD behavior in T-symmetric vacuum spacetimes, Ann. Henri Poincaré, Volume 14 (2013) no. 6, pp. 1445-1523 | DOI
[51] A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges, J. Geom. Phys., Volume 121 (2017), pp. 42-71 | DOI
[52] Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 21, pp. 5361-5386 | DOI
[53] Topologically general U(1) symmetric vacuum space-times with AVTD behavior, Nuovo Cimento Soc. Ital. Fis. B, Volume 119 (2004) no. 7-9, pp. 625-638
[54] A new class of asymptotically non-chaotic vacuum singularities, Ann. Phys., Volume 363 (2015), pp. 1-35 | DOI
[55] Asymptotically Kasner-like singularities, Am. J. Math., Volume 145 (2023) no. 4, pp. 1183-1272 | DOI
[56] Initial data on big bang singularities, preprint, 2022 | arXiv
[57] Initial data on big bang singularities in symmetric settings, Pure Appl. Math. Q, Volume 20 (2024) no. 4, pp. 1505-1539 | DOI
[58] Developments of initial data on big bang singularities for the Einstein-nonlinear scalar field equations, preprint, 2024 | arXiv
[59] The cosmological time function, Class. Quantum Gravity, Volume 15 (1998) no. 2, pp. 309-322 | DOI
[60] A class of homogeneous cosmological models, Commun. Math. Phys., Volume 12 (1969), pp. 108-141 http://projecteuclid.org/euclid.cmp/1103841345
[61] The Bianchi classification in the Schücking–Behr approach, Gen. Relativ. Gravit., Volume 35 (2003) no. 3, pp. 475-489 | DOI
[62] A dynamical systems approach to Bianchi cosmologies: orthogonal models of class A, Class. Quantum Gravity, Volume 6 (1989) no. 10, pp. 1409-1431 | DOI
[63] A dynamical systems approach to Bianchi cosmologies: orthogonal models of class B, Class. Quantum Gravity, Volume 10 (1993) no. 1, pp. 99-124 | DOI
[64] Dynamical Systems in Cosmology (J. Wainwright; G. F. R. Ellis, eds.), Cambridge University Press, Cambridge, 1997, xiv+343 pages (Papers from the workshop held in Cape Town, June 27–July 2, 1994) | DOI
[65] Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, ix+301 pages (Translated from the Russian by Dmitry Gokhman) | DOI
[66] Mixmaster Universe, Phys. Rev. Lett., Volume 22 (1969), pp. 1071-1074
[67] A singularity-free empty universe, Sov. Phys. JETP, Volume 28 (1969), pp. 122-133
[68] Nonisometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes, Phys. Rev. D (3), Volume 48 (1993) no. 4, pp. 1616-1628 | DOI
[69] The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2009, xiv+294 pages | DOI
[70] Curvature blow up in Bianchi VIII and IX vacuum spacetimes, Class. Quantum Gravity, Volume 17 (2000) no. 4, pp. 713-731 | DOI
[71] The Bianchi IX attractor, Ann. Henri Poincaré, Volume 2 (2001) no. 3, pp. 405-500 | DOI
[72] Mixmaster: fact and belief, Class. Quantum Gravity, Volume 26 (2009) no. 7, 075016 | DOI
[73] A new proof of the Bianchi type IX attractor theorem, Class. Quantum Gravity, Volume 26 (2009) no. 7, 075015 | DOI
[74] Bianchi VIII and IX vacuum cosmologies: Almost every solution forms particle horizons and converges to the Mixmaster attractor, preprint, 2016 | arXiv
[75] Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes, Class. Quantum Gravity, Volume 27 (2010) no. 18, 185005 | DOI
[76] Ancient dynamics in Bianchi models: approach to periodic cycles, Commun. Math. Phys., Volume 305 (2011) no. 1, pp. 59-83 | DOI
[77] The BKL conjectures for spatially homogeneous spacetimes, preprint, 2010 | arXiv
[78] Oscillatory singularities in Bianchi models with magnetic fields, Ann. Henri Poincaré, Volume 14 (2013) no. 5, pp. 1043-1075 | DOI
[79] Chaotic dynamics of spatially homogeneous spacetimes, Commun. Math. Phys., Volume 399 (2023) no. 2, pp. 737-927 | DOI
[80] Asymptotic dynamics of the exceptional Bianchi cosmologies, Class. Quantum Gravity, Volume 20 (2003) no. 9, pp. 1743-1756 | DOI
[81] Dynamics of magnetic Bianchi VI cosmologies, Class. Quantum Gravity, Volume 17 (2000) no. 2, pp. 421-434 | DOI
[82] Oscillations toward the singularity of locally rotationally symmetric Bianchi type IX cosmological models with Vlasov matter, SIAM J. Appl. Dyn. Syst., Volume 9 (2010) no. 4, pp. 1244-1262 | DOI
[83] Global dynamics of the mixmaster model, Class. Quantum Gravity, Volume 14 (1997) no. 8, pp. 2341-2356 | DOI
[84] Strong cosmic censorship in orthogonal Bianchi class B perfect fluids and vacuum models, Ann. Henri Poincaré, Volume 20 (2019) no. 3, pp. 689-796 | DOI
[85] On Bianchi type VI spacetimes with orthogonal perfect fluid matter, Ann. Henri Poincaré, Volume 21 (2020) no. 9, pp. 3069-3094 | DOI
[86] Orthogonal Bianchi B stiff fluids close to the initial singularity, preprint, 2017 | arXiv
[87] Quiescence for the exceptional Bianchi cosmologies, preprint, 2023 | arXiv
[88] The closed-universe recollapse conjecture, Mon. Not. R. Astron. Soc., Volume 223 (1986), pp. 835-844
[89] Proof of the closed-universe-recollapse conjecture for diagonal Bianchi type-IX cosmologies, Phys. Rev. D (3), Volume 40 (1989) no. 10, pp. 3280-3286 | DOI
[90] The future asymptotics of Bianchi VIII vacuum solutions, Class. Quantum Gravity, Volume 18 (2001) no. 18, pp. 3791-3823 | DOI
[91] Future asymptotic expansions of Bianchi VIII vacuum metrics, Class. Quantum Gravity, Volume 20 (2003) no. 11, pp. 1943-1989 | DOI
[92] Future asymptotics of vacuum Bianchi type VI solutions, Class. Quantum Gravity, Volume 26 (2009) no. 14, 145001 | DOI
[93] Isotropic solutions of the Einstein–Liouville equations, J. Math. Phys., Volume 9 (1968) no. 9, pp. 1344-1349
[94] Asymptotic self-similarity breaking at late times in cosmology, Class. Quantum Gravity, Volume 16 (1999) no. 8, pp. 2577-2598 | DOI
[95] An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe, Astrophys. J., Volume 522 (1999) no. 1, p. L1-L3
[96] Non-tilted Bianchi VII models—the radiation fluid, Class. Quantum Gravity, Volume 17 (2000) no. 16, pp. 3119-3134 | DOI
[97] On almost Ehlers–Geren–Sachs theorems, Class. Quantum Gravity, Volume 39 (2022) no. 10, 105006 | DOI
[98] The future of tilted Bianchi universes, Class. Quantum Gravity, Volume 20 (2003) no. 13, pp. 2841-2854 | DOI
[99] The asymptotic behaviour of tilted Bianchi type VI universes, Class. Quantum Gravity, Volume 21 (2004) no. 9, pp. 2301-2317 | DOI
[100] Bianchi cosmologies: a tale of two tilted fluids, Class. Quantum Gravity, Volume 21 (2004) no. 17, pp. 4193-4207 | DOI
[101] Future asymptotic behaviour of tilted Bianchi models of type IV and VII, Class. Quantum Gravity, Volume 22 (2005) no. 3, pp. 607-633 | DOI
[102] Late-time behaviour of the tilted Bianchi type VI models, Class. Quantum Gravity, Volume 24 (2007) no. 15, pp. 3859-3895 | DOI
[103] Late-time behaviour of the tilted Bianchi type VI models, Class. Quantum Gravity, Volume 25 (2008) no. 1, 015002 | DOI
[104] A note on tilted Bianchi type VI models: the type III bifurcation, Class. Quantum Gravity, Volume 25 (2008) no. 19, 198001 | DOI
[105] Future asymptotics of tilted Bianchi type II cosmologies, Class. Quantum Gravity, Volume 27 (2010) no. 18, 185006 | DOI
[106] Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein–Vlasov equations, Class. Quantum Gravity, Volume 17 (2000) no. 22, pp. 4697-4713 | DOI
[107] Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter at late times assuming small data, Class. Quantum Gravity, Volume 27 (2010) no. 23, 235025 | DOI
[108] Future non-linear stability for reflection symmetric solutions of the Einstein–Vlasov system of Bianchi types II and VI, Ann. Henri Poincaré, Volume 14 (2013) no. 4, pp. 967-999 | DOI
[109] Asymptotic behaviour of the relativistic Boltzmann equation in the Robertson–Walker spacetime, J. Differ. Equ., Volume 255 (2013) no. 11, pp. 4267-4288 | DOI
[110] Global solutions of the Vlasov–Poisson–Boltzmann system in a cosmological setting, J. Math. Phys., Volume 54 (2013) no. 7, 073302 | DOI
[111] Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D (3), Volume 28 (1983) no. 8, pp. 2118-2120 | DOI
[112] Asymptotic behaviour of the Einstein–Vlasov system with a positive cosmological constant, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 2, pp. 495-509 | DOI
[113] Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound, Class. Quantum Gravity, Volume 21 (2004) no. 9, pp. 2445-2454 | DOI
[114] Intermediate inflation and the slow-roll approximation, Class. Quantum Gravity, Volume 22 (2005) no. 9, pp. 1655-1666 | DOI
[115] Dynamics of k-essence, Class. Quantum Gravity, Volume 23 (2006) no. 5, pp. 1557-1569 | DOI
[116] The existence of constant mean curvature foliations of Gowdy 3-torus spacetimes, Commun. Math. Phys., Volume 86 (1982) no. 4, pp. 485-493 http://projecteuclid.org/euclid.cmp/1103921839
[117] On space-times with U(1) U(1) symmetric compact Cauchy surfaces, Ann. Phys., Volume 202 (1990) no. 1, pp. 100-150 | DOI
[118] On Uniqueness in the Large of Solutions of Einstein’s Equations (“Strong Cosmic Censorship”), Proceedings of the Centre for Mathematics and its Applications, Australian National University, 27, Australian National University, Centre for Mathematics and its Applications, Canberra, 1991, 130 pages
[119] Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Gravity, Volume 12 (1995) no. 6, pp. 1517-1533 | DOI
[120] Constant mean curvature foliations in cosmological space-times, Helv. Phys. Acta, Volume 69 (1996), pp. 490-500 Journées Relativistes 96, Part II (Ascona, 1996)
[121] Global foliations of vacuum spacetimes with T isometry, Ann. Phys., Volume 260 (1997) no. 1, pp. 117-148 | DOI
[122] Existence and non-existence results for global constant mean curvature foliations, Nonlinear Anal., Volume 30 (1997) no. 6, pp. 3589-3598 | DOI
[123] Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry, Commun. Math. Phys., Volume 189 (1997) no. 1, pp. 145-164 | DOI
[124] Global foliations of matter spacetimes with Gowdy symmetry, Commun. Math. Phys., Volume 206 (1999) no. 2, pp. 337-365 | DOI
[125] On the area of the symmetry orbits in T symmetric spacetimes, Class. Quantum Gravity, Volume 20 (2003) no. 16, pp. 3783-3796 | DOI
[126] On the Einstein–Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 134 (2003) no. 3, pp. 529-549 | DOI
[127] Existence of CMC and constant areal time foliations in T symmetric spacetimes with Vlasov matter, Commun. Partial Differ. Equ., Volume 29 (2004) no. 1-2, pp. 237-262 | DOI
[128] On a compact Lie group acting on a manifold, Ann. Math. (2), Volume 65 (1957), pp. 447-455 | DOI
[129] Errata, “On a compact Lie group acting on a manifold”, Ann. Math. (2), Volume 66 (1957), p. 589 | DOI
[130] Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions, Ann. Phys., Volume 83 (1974), pp. 203-241 | DOI
[131] Locally U(1) U(1) symmetric cosmological models: topology and dynamics, Class. Quantum Gravity, Volume 18 (2001) no. 3, pp. 479-507 | DOI
[132] Strong cosmic censorship in polarised Gowdy spacetimes, Class. Quantum Gravity, Volume 7 (1990) no. 10, pp. 1671-1680 | DOI
[133] On a wave map equation arising in general relativity, Commun. Pure Appl. Math., Volume 57 (2004) no. 5, pp. 657-703 | DOI
[134] On Gowdy vacuum spacetimes, Math. Proc. Camb. Philos. Soc., Volume 136 (2004) no. 2, pp. 485-512 | DOI
[135] Asymptotic expansions close to the singularity in Gowdy spacetimes, Class. Quantum Gravity, Volume 21 (2004), p. S305-S322 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI
[136] Existence of an asymptotic velocity and implications for the asymptotic behavior in the direction of the singularity in T-Gowdy, Commun. Pure Appl. Math., Volume 59 (2006) no. 7, pp. 977-1041 | DOI
[137] Strong cosmic censorship in T-Gowdy spacetimes, Ann. Math. (2), Volume 170 (2009) no. 3, pp. 1181-1240 | DOI
[138] Strong cosmic censorship for solutions of the Einstein–Maxwell field equations with polarized Gowdy symmetry, Class. Quantum Gravity, Volume 26 (2009) no. 10, 105019 | DOI
[139] Manufacture of Gowdy spacetimes with spikes, Class. Quantum Gravity, Volume 18 (2001) no. 15, pp. 2959-2975 | DOI
[140] New explicit spike solutions—non-local component of the generalized mixmaster attractor, Class. Quantum Gravity, Volume 25 (2008) no. 4, 045014 | DOI
[141] Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter, Commun. Pure Appl. Math., Volume 69 (2016) no. 5, pp. 815-908 | DOI
[142] Cosmological solutions of the Vlasov–Einstein system with spherical, plane, and hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 119 (1996) no. 4, pp. 739-762 | DOI
[143] On the nature of initial singularities for solutions of the Einstein–Vlasov-scalar field system with surface symmetry, Math. Proc. Camb. Philos. Soc., Volume 141 (2006) no. 3, pp. 547-562 | DOI
[144] Inextendibility of expanding cosmological models with symmetry, Class. Quantum Gravity, Volume 22 (2005) no. 23, p. L143-L147 | DOI
[145] Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter, Commun. Pure Appl. Math., Volume 69 (2016) no. 5, pp. 815-908 | DOI
[146] Strong cosmic censorship for T-symmetric spacetimes with cosmological constant and matter, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1425-1453 | DOI
[147] BKL bounces outside homogeneity: Gowdy symmetric spacetimes, preprint, 2024 | arXiv
[148] On future asymptotics of polarized Gowdy T-models, Class. Quantum Gravity, Volume 20 (2003) no. 1, pp. 173-191 | DOI
[149] Data at the moment of infinite expansion for polarized Gowdy, Class. Quantum Gravity, Volume 22 (2005) no. 9, pp. 1647-1653 | DOI
[150] Linear systems of wave equations on cosmological backgrounds with convergent asymptotics, Astérisque, Volume 420 (2020), p. xi + 510 | DOI
[151] On curvature decay in expanding cosmological models, Commun. Math. Phys., Volume 264 (2006) no. 3, pp. 613-630 | DOI
[152] Instability of spatially homogeneous solutions in the class of -symmetric solutions to Einstein’s vacuum equations, Commun. Math. Phys., Volume 334 (2015) no. 3, pp. 1299-1375 | DOI
[153] Future asymptotics and geodesic completeness of polarized T-symmetric spacetimes, Anal. PDE, Volume 9 (2016) no. 2, pp. 363-395 | DOI
[154] On future geodesic completeness for the Einstein–Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 1, pp. 237-244 | DOI
[155] Global existence and asymptotic behaviour in the future for the Einstein–Vlasov system with positive cosmological constant, Class. Quantum Gravity, Volume 20 (2003) no. 14, pp. 3037-3049 | DOI
[156] The surface-symmetric Einstein–Vlasov system with cosmological constant, Math. Proc. Camb. Philos. Soc., Volume 138 (2005) no. 3, pp. 541-553 | DOI
[157] Isotropic cosmological singularities and the Einstein–Vlasov equations, Nonlinear Anal., Volume 30 (1997) no. 6, pp. 3599-3603 | DOI
[158] Isotropic cosmological singularities. II. The Einstein–Vlasov system, Ann. Phys., Volume 276 (1999) no. 2, pp. 294-320 | DOI
[159] Isotropic cosmological singularities. III. The Cauchy problem for the inhomogeneous conformal Einstein–Vlasov equations, Ann. Phys., Volume 282 (2000) no. 2, pp. 395-419 | DOI
[160] A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity, Class. Quantum Gravity, Volume 17 (2000) no. 10, pp. 2117-2128 | DOI
[161] Reflections on the U(1) problem in general relativity, J. Fixed Point Theory Appl., Volume 14 (2013) no. 2, pp. 397-418 | DOI
[162] Reduction of the Einstein–Maxwell and Einstein–Maxwell–Higgs equations for cosmological spacetimes with spacelike U(1) isometry groups, Class. Quantum Gravity, Volume 7 (1990) no. 3, pp. 329-352 | DOI
[163] An existence theorem for the reduced Einstein equation, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 153-159
[164] Existence theorem for solutions of Einstein’s equations with 1 parameter spacelike isometry groups, Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994) (Proceedings of Symposia in Pure Mathematics), Volume 59, American Mathematical Society, Providence, RI, 1996, pp. 67-80 | DOI
[165] Future complete Einsteinian space times with U(1) isometry group, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 2, pp. 137-144 | DOI
[166] Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, Volume 2 (2001) no. 6, pp. 1007-1064 | DOI
[167] Nonlinear stability of an expanding universe with the S isometry group, Partial Differential Equations and Mathematical Physics (Tokyo, 2001) (Progress in Nonlinear Differential Equations and Their Applications), Volume 52, Birkhäuser, Boston, MA, 2003, pp. 57-71
[168] Future complete S symmetric Einsteinian spacetimes, the unpolarized case, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 2, pp. 129-136 | DOI
[169] Future complete U(1) symmetric Einsteinian spacetimes, the unpolarized case, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, 2004
[170] Future complete vacuum spacetimes, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, 2004, pp. 299-330
[171] Einstein spaces as attractors for the Einstein flow, J. Differ. Geom., Volume 89 (2011) no. 1, pp. 1-47 http://projecteuclid.org/euclid.jdg/1324476750
[172] Nonlinear stability of the Milne model with matter, Commun. Math. Phys., Volume 378 (2020) no. 1, pp. 261-298 | DOI
[173] Attractors of the Einstein–Klein-Gordon system, Commun. Partial Differ. Equ., Volume 46 (2021) no. 1, pp. 1-30 | DOI
[174] Future stability of the 1 + 3 Milne model for the Einstein–Klein-Gordon system, Class. Quantum Gravity, Volume 36 (2019) no. 22, 225010 | DOI
[175] On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609 http://projecteuclid.org/euclid.cmp/1104116232
[176] On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations, J. Differ. Geom., Volume 34 (1991) no. 2, pp. 275-345 http://projecteuclid.org/euclid.jdg/1214447211
[177] Smooth non-zero rest-mass evolution across time-like infinity, Ann. Henri Poincaré, Volume 16 (2015) no. 10, pp. 2215-2238 | DOI
[178] Sharp asymptotics for Einstein--dust flows, Commun. Math. Phys., Volume 350 (2017) no. 2, pp. 803-844 | DOI
[179] A conformal approach for the analysis of the non-linear stability of radiation cosmologies, Ann. Phys., Volume 328 (2013), pp. 1-25 | DOI
[180] Future stability of the Einstein-non-linear scalar field system, Invent. Math., Volume 173 (2008) no. 1, pp. 123-208 | DOI
[181] Power law inflation, Commun. Math. Phys., Volume 290 (2009) no. 1, pp. 155-218 | DOI
[182] Future stability of the Einstein–Maxwell-scalar field system, Ann. Henri Poincaré, Volume 12 (2011) no. 5, pp. 849-917 | DOI
[183] The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Selecta Math. (N.S.), Volume 18 (2012) no. 3, pp. 633-715 | DOI
[184] Power law inflation with electromagnetism, Ann. Phys., Volume 334 (2013), pp. 420-454 | DOI
[185] The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc. (JEMS), Volume 15 (2013) no. 6, pp. 2369-2462 | DOI
[186] On the Topology and Future Stability of the Universe, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013, xiv+718 pages | DOI
[187] The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant, J. Hyperbolic Differ. Equ., Volume 12 (2015) no. 1, pp. 87-188 | DOI
[188] Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., Volume 346 (2016) no. 1, pp. 293-312 | DOI
[189] Cosmological Newtonian limits on large spacetime scales, Commun. Math. Phys., Volume 364 (2018) no. 3, pp. 1195-1304 | DOI
[190] Newtonian limits of isolated cosmological systems on long time scales, Ann. Henri Poincaré, Volume 19 (2018) no. 7, pp. 2157-2243 | DOI
[191] Future stability of the FLRW spacetime for a large class of perfect fluids, Ann. Henri Poincaré, Volume 22 (2021) no. 3, pp. 715-770 | DOI
[192] Stable big bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems, Selecta Math. (N.S.), Volume 24 (2018) no. 5, pp. 4293-4459 | DOI
[193] A regime of linear stability for the Einstein-scalar field system with applications to nonlinear big bang formation, Ann. Math. (2), Volume 187 (2018) no. 1, pp. 65-156 | DOI
[194] The maximal development of near-FLRW data for the Einstein-scalar field system with spatial topology , Commun. Math. Phys., Volume 364 (2018) no. 3, pp. 879-979 | DOI
[195] Cosmic Censorship near FLRW spacetimes with negative spatial curvature, preprint, 2023 | arXiv
[196] On the nature of Hawking’s incompleteness for the Einstein-vacuum equations: the regime of moderately spatially anisotropic initial data, J. Eur. Math. Soc. (JEMS), Volume 24 (2022) no. 1, pp. 167-263 | DOI
[197] Localized big bang stability for the Einstein-scalar field equations, Arch. Ration. Mech. Anal., Volume 248 (2024) no. 1, 3 | DOI
[198] Past stability of FLRW solutions to the Einstein-Euler-scalar field equations and their big bang singularites, preprint, 2023 | arXiv
[199] Past instability of FLRW solutions of the Einstein–Euler-scalar field equations for linear equations of state p = K with 0 K 1/3, Phys. Rev. D, Volume 110 (2024) no. 4, 044060 | DOI
[200] On the past maximal development of near-FLRW data for the Einstein scalar-field Vlasov system, preprint, 2024 | arXiv
[201] Stable big bang formation for Einstein’s equations: the complete sub-critical regime, J. Amer. Math. Soc., Volume 36 (2023) no. 3, pp. 827-916 | DOI
[202] Formation of quiescent big bang singularities, preprint, 2023 | arXiv
[203] Explicit solutions of cmu = 0 on the Friedmann–Robertson–Walker space-times, Ann. Inst. Henri Poincaré Sect. A (N.S.), Volume 35 (1981) no. 4, pp. 253-257
[204] Asymptotics of linearized cosmological perturbations, J. Hyperbolic Differ. Equ., Volume 7 (2010) no. 2, pp. 255-277 | DOI
[205] A note on wave equation in Einstein and de Sitter space-time, J. Math. Phys., Volume 51 (2010) no. 5, 052501 | DOI
[206] The wave equation on asymptotically de Sitter-like spaces, Adv. Math., Volume 223 (2010) no. 1, pp. 49-97 | DOI
[207] The mode solution of the wave equation in Kasner spacetimes and redshift, Math. Phys. Anal. Geom., Volume 19 (2016) no. 4, 26 | DOI
[208] The wave equation near flat Friedmann–Lemaître–Robertson–Walker and Kasner Big Bang singularities, J. Hyperbolic Differ. Equ., Volume 16 (2019) no. 2, pp. 379-400 | DOI
[209] Waves on accelerating dodecahedral universes, Class. Quantum Gravity, Volume 34 (2017) no. 5, 055010 | DOI
[210] Solutions of the wave equation bounded at the big bang, Class. Quantum Gravity, Volume 36 (2019) no. 7, 075016 | DOI
[211] A unified approach to the Klein-Gordon equation on Bianchi backgrounds, Commun. Math. Phys., Volume 372 (2019) no. 2, pp. 599-656 | DOI
[212] Wave asymptotics at a cosmological time-singularity: classical and quantum scalar fields, Commun. Math. Phys., Volume 369 (2019) no. 3, pp. 973-1020 | DOI
[213] Propagation of massive scalar fields in pre-big bang cosmologies, Commun. Math. Phys., Volume 380 (2020) no. 2, pp. 973-1001 | DOI
[214] Blow-up of waves on singular spacetimes with generic spatial metrics, Lett. Math. Phys., Volume 112 (2022) no. 2, 42 | DOI
[215] Wave equations on silent big bang backgrounds, preprint, 2021 | arXiv
[216] Conformal scattering of the Maxwell-scalar field system on de Sitter space, J. Hyperbolic Differ. Equ., Volume 16 (2019) no. 4, pp. 743-791 | DOI
[217] Asymptotics of solutions to silent wave equations, preprint, 2023 | arXiv
[218] Scattering towards the singularity for the wave equation and the linearized Einstein-scalar field system in Kasner spacetimes, preprint, 2024 | arXiv
[219] Scattering for the wave equation on de Sitter space in all even spatial dimensions, preprint, 2024 | arXiv
[220] Numerical study of initially expanding mixmaster universes, Class. Quantum Gravity, Volume 7 (1990) no. 2, pp. 203-216 | DOI
[221] Numerical investigation of cosmological singularities, Phys. Rev. D (3), Volume 48 (1993) no. 10, pp. 4676-4687 | DOI
[222] New algorithm for Mixmaster dynamics, Class. Quantum Gravity, Volume 14 (1997) no. 2, p. L29-L36 | DOI
[223] The singularity in generic gravitational collapse is spacelike, local and oscillatory, Modern Phys. Lett. A, Volume 13 (1998) no. 19, pp. 1565-1573 | DOI
[224] Numerical evidence that the singularity in polarized U(1) symmetric cosmologies on T R is velocity dominated, Phys. Rev. D (3), Volume 57 (1998) no. 12, pp. 7235-7240 | DOI
[225] Phenomenology of the Gowdy universe on T R , Phys. Rev. D (3), Volume 57 (1998) no. 8, pp. 4767-4777 | DOI
[226] Exact U(1) symmetric cosmologies with local mixmaster dynamics, Phys. Rev. D (3), Volume 62 (2000) no. 2, 023509 | DOI
[227] Signature for local mixmaster dynamics in U(1) symmetric cosmologies, Phys. Rev. D (3), Volume 62 (2000) no. 12, 123501 | DOI
[228] Oscillatory approach to the singularity in vacuum spacetimes with T isometry, Phys. Rev. D (3), Volume 64 (2001) no. 8, 084006 | DOI
[229] Hunting local mixmaster dynamics in spatially inhomogeneous cosmologies, Class. Quantum Gravity, Volume 21 (2004), p. S81-S95 (A spacetime safari: essays in honour of Vincent Moncrief) | DOI
[230] Numerical study of the expanding direction of T-symmetric spacetimes, Phys. Rev. D, Volume 108 (2023) no. 10, 104015 | DOI
[231] Stability within T-symmetric expanding spacetimes, Ann. Henri Poincaré, Volume 21 (2020) no. 3, pp. 675-703 | DOI
[232] High velocity spikes in Gowdy spacetimes, Phys. Rev. D (3), Volume 67 (2003) no. 12, 124009 | DOI
[233] The electromagnetic spike solutions, Class. Quantum Gravity, Volume 30 (2013) no. 23, 235020 | DOI
[234] Spikes and matter inhomogeneities in massless scalar field models, Class. Quantum Gravity, Volume 33 (2016) no. 1, 015009 | DOI
[235] On the first G stiff fluid spike solution in general relativity, Class. Quantum Gravity, Volume 33 (2016) no. 21, 215010 | DOI
[236] Stiff fluid spike solutions from Bianchi type V seed solutions, Class. Quantum Gravity, Volume 34 (2017) no. 23, 235013 | DOI
[237] Numerical confirmations of joint spike transitions in G cosmologies, Class. Quantum Gravity, Volume 39 (2022) no. 6, 065001 | DOI
[238] Simulations of generic singularities in harmonic coordinates, The Conformal Structure of Space-time (Lecture Notes in Physics), Volume 604, Springer, Berlin, 2002, pp. 349-358 | DOI
[239] Numerical simulations of generic singularities, Phys. Rev. Lett., Volume 93 (2004) no. 16, 161101 | DOI
[240] The nature of gravitational singularities, Int. J. Mod. Phys. D, Volume 13 (2004) no. 10, pp. 2261-2265 | DOI
[241] Numerical simulations of general gravitational singularities, Class. Quantum Gravity, Volume 24 (2007) no. 12, p. S295-S306 | DOI
[242] Spike behavior in the approach to spacetime singularities, Phys. Rev. D, Volume 102 (2020) no. 12, 124067 | DOI
[243] Initial conditions problem in cosmological inflation revisited, Phys. Lett. B, Volume 843 (2023), 138028 | DOI
Cité par Sources :
Commentaires - Politique