We discuss local and global existence and uniqueness for the price formation free boundary model with homogeneous Neumann boundary conditions introduced by Lasry and Lions in 2007. The results are based on a transformation of the problem to the heat equation with nonstandard boundary conditions. The free boundary becomes the zero level set of the solution of the heat equation. The transformation allows us to construct an explicit solution and discuss the behavior of the free boundary. Global existence can be verified under certain conditions on the free boundary and examples of non-existence are given.
Nous discutons lʼexistence locale et globale, ainsi que lʼunicité des solutions pour le modèle de formation des prix à frontière libre avec des conditions aux bords de Neumann homogènes introduit par Lasry et Lions en 2007. Nos résultats sont basés sur une transformation de ce problème en une équation de la chaleur avec des conditions aux bords non standard. La frontière libre devient la ligne de niveau zéro de la solution de lʼéquation de la chaleur. Cette transformation nous permet de construire une solution explicite et de discuter le comportement de la frontière libre. Lʼexistence globale peut être vérifiée sous certaines conditions sur la frontière libre, et nous donnons des exemples de non-existence.
Accepted:
Published online:
Luis A. Caffarelli 1; Peter A. Markowich 2, 3; Marie-Therese Wolfram 3
@article{CRMATH_2011__349_15-16_841_0, author = {Luis A. Caffarelli and Peter A. Markowich and Marie-Therese Wolfram}, title = {On a price formation free boundary model by {Lasry} and {Lions:} {The} {Neumann} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {841--844}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.006}, language = {en}, }
TY - JOUR AU - Luis A. Caffarelli AU - Peter A. Markowich AU - Marie-Therese Wolfram TI - On a price formation free boundary model by Lasry and Lions: The Neumann problem JO - Comptes Rendus. Mathématique PY - 2011 SP - 841 EP - 844 VL - 349 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2011.07.006 LA - en ID - CRMATH_2011__349_15-16_841_0 ER -
%0 Journal Article %A Luis A. Caffarelli %A Peter A. Markowich %A Marie-Therese Wolfram %T On a price formation free boundary model by Lasry and Lions: The Neumann problem %J Comptes Rendus. Mathématique %D 2011 %P 841-844 %V 349 %N 15-16 %I Elsevier %R 10.1016/j.crma.2011.07.006 %G en %F CRMATH_2011__349_15-16_841_0
Luis A. Caffarelli; Peter A. Markowich; Marie-Therese Wolfram. On a price formation free boundary model by Lasry and Lions: The Neumann problem. Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 841-844. doi : 10.1016/j.crma.2011.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.07.006/
[1] Riesz basis of exponentials and sine-type functions, Acta Math. Hungar., Volume 51 (1988) no. 1, pp. 3-14
[2] On a price formation free boundary problem by Lasry & Lions, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 11–12, pp. 621-624
[3] Global existence and uniqueness of solutions to a model of price formation, SIAM J. Math. Anal., Volume 41 (2009) no. 5, pp. 2107-2135
[4] Asymptotics for a free-boundary problem in price formation, Nonlinear Anal., Volume 74 (2011), pp. 3269-3294
[5] On the Muckenhoupt condition, Period. Math. Hungar., Volume 18 (1987) no. 1, pp. 53-58
[6] Mean field games, Jpn. J. Math., Volume 2 (2007) no. 1, pp. 229-260
[7] On a parabolic free boundary equation modeling price formation, Math. Models Methods Appl. Sci., Volume 11 (2009) no. 19, pp. 1929-1957
Cited by Sources:
Comments - Policy