Comptes Rendus
Partial Differential Equations/Functional Analysis
Gradient vector fields with values into S1
Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 883-887.

We state the following regularity result: if a two-dimensional gradient vector field v=ψ with values into the unit circle S1 belongs to H1/2 (or W1,1) then v is locally Lipschitz except at a locally finite number of vortices. We also state approximation results for such vector fields.

Le résultat de régularité suivant a lieu : Si un champ de gradient v=ψ est à valeurs dans le cercle unité S1 et appartient à H1/2 (ou W1,1) alors v est localement Lipschitz en dehors dʼun nombre localement fini de points singuliers. Ensuite, des résultats de densité sont énoncés pour cette classe de champs de gradient.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.07.024

Radu Ignat 1

1 Laboratoire de Mathématiques, Université Paris-Sud 11, Bât. 425, 91405 Orsay cedex, France
@article{CRMATH_2011__349_15-16_883_0,
     author = {Radu Ignat},
     title = {Gradient vector fields with values into $ {S}^{1}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {883--887},
     publisher = {Elsevier},
     volume = {349},
     number = {15-16},
     year = {2011},
     doi = {10.1016/j.crma.2011.07.024},
     language = {en},
}
TY  - JOUR
AU  - Radu Ignat
TI  - Gradient vector fields with values into $ {S}^{1}$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 883
EP  - 887
VL  - 349
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2011.07.024
LA  - en
ID  - CRMATH_2011__349_15-16_883_0
ER  - 
%0 Journal Article
%A Radu Ignat
%T Gradient vector fields with values into $ {S}^{1}$
%J Comptes Rendus. Mathématique
%D 2011
%P 883-887
%V 349
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2011.07.024
%G en
%F CRMATH_2011__349_15-16_883_0
Radu Ignat. Gradient vector fields with values into $ {S}^{1}$. Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 883-887. doi : 10.1016/j.crma.2011.07.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.07.024/

[1] F. Bethuel; X.M. Zheng Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[2] J. Bourgain; H. Brezis; P. Mironescu H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 1-115

[3] H. Brezis; P. Mironescu; A. Ponce W1,1-maps with values into S1, Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100

[4] J. Dávila; R. Ignat Lifting of BV functions with values in S1, C. R. Math. Acad. Sci. Paris, Volume 337 (2003), pp. 159-164

[5] A. DeSimone; H. Knüpfer; F. Otto 2-d stability of the Néel wall, Calc. Var. Partial Differential Equations, Volume 27 (2006), pp. 233-253

[6] A. DeSimone; R.V. Kohn; S. Müller; F. Otto A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1408-1460

[7] M. Giaquinta; G. Modica; J. Soucek Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998

[8] F. Golse; P.-L. Lions; B. Perthame; R. Sentis Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125

[9] R. Ignat The space BV(S2,S1): minimal connection and optimal lifting, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 283-302

[10] R. Ignat, Two-dimensional unit-length vector fields of vanishing divergence, submitted for publication.

[11] R. Ignat; H. Knüpfer Vortex energy and 360° Néel walls in thin-film micromagnetics, Comm. Pure Appl. Math., Volume 63 (2010), pp. 1677-1724

[12] R. Ignat; F. Otto A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 909-956

[13] P.-E. Jabin; F. Otto; B. Perthame Line-energy Ginzburg–Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 1 (2002), pp. 187-202

[14] T. Rivière Dense subsets of H1/2(S2,S1), Ann. Global Anal. Geom., Volume 18 (2000), pp. 517-528

Cited by Sources:

Comments - Policy