Comptes Rendus
Partial Differential Equations
A method for establishing upper bounds for singular perturbation problems
[Une méthode de construction des bornes supérieures pour des problèmes de perturbation singulières]
Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 97-102.

On présente deux applications d'une nouvelle méthode pour construire des bornes supérieures pour des problèmes de perturbation singulière où interviennent des applications à variation bornée. On applique cette méthode à deux problèmes, l'un du premier ordre et l'autre du second. Le premier est un problème de minimisation lié à la question de relèvement optimal pour des applications à variation bornée à valeurs dans S1. Pour ce problème on démontre un théorème de Γ-convergence. Le second problème concerne la fonctionnelle d'Aviles–Giga, ɛΩ|2v|2dx+1ɛΩ(1|v|2)2dx, pour laquelle on construit une borne supérieure via une suite de fonctions ayant comme limite une fonction dont le gradient est dans BV.

We present two applications of a new method for proving upper bounds for singular perturbation problems involving maps of bounded variation. The two problems are of first and second order, respectively. The first is a minimization problem, related to the question of optimal lifting for BV-maps with values in S1, for which we prove a Γ-convergence result. The second problem involves the Aviles–Giga functional, ɛΩ|2v|2dx+1ɛΩ(1|v|2)2dx, for which we construct upper bounds via a sequence of functions whose limit has gradient in BV.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2005.06.009

Arkady Poliakovsky 1

1 Department of Mathematics, Technion – I.I.T., 32000 Haifa, Israel
@article{CRMATH_2005__341_2_97_0,
     author = {Arkady Poliakovsky},
     title = {A method for establishing upper bounds for singular perturbation problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {97--102},
     publisher = {Elsevier},
     volume = {341},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crma.2005.06.009},
     language = {en},
}
TY  - JOUR
AU  - Arkady Poliakovsky
TI  - A method for establishing upper bounds for singular perturbation problems
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 97
EP  - 102
VL  - 341
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2005.06.009
LA  - en
ID  - CRMATH_2005__341_2_97_0
ER  - 
%0 Journal Article
%A Arkady Poliakovsky
%T A method for establishing upper bounds for singular perturbation problems
%J Comptes Rendus. Mathématique
%D 2005
%P 97-102
%V 341
%N 2
%I Elsevier
%R 10.1016/j.crma.2005.06.009
%G en
%F CRMATH_2005__341_2_97_0
Arkady Poliakovsky. A method for establishing upper bounds for singular perturbation problems. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 97-102. doi : 10.1016/j.crma.2005.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.009/

[1] L. Ambrosio Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 17 (1990), pp. 439-478

[2] L. Ambrosio; C. De Lellis; C. Mantegazza Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 327-355

[3] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, New York, 2000

[4] P. Aviles; Y. Giga A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ., Volume 12 (1987), pp. 1-16

[5] P. Aviles; Y. Giga On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999), pp. 1-17

[6] S. Conti, C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Preprint

[7] J. Dávila; R. Ignat Lifting of BV functions with values in S1, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 159-164

[8] C. De Lellis An example in the gradient theory of phase transitions, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 285-289 (electronic)

[9] A. DeSimone; S. Müller; R.V. Kohn; F. Otto A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 833-844

[10] N.M. Ercolani; R. Indik; A.C. Newell; T. Passot The geometry of the phase diffusion equation, J. Nonlinear Sci., Volume 10 (2000), pp. 223-274

[11] L.C. Evans; R.F. Gariepy Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992

[12] E. Giusti Minimal Surfaces and Functions of Bounded Variation, Monographs Math., vol. 80, Birkhäuser, Basel, 1984

[13] R. Ignat, A. Poliakovsky, An example related to optimal lifting in BV-space, Preprint

[14] W. Jin; R.V. Kohn Singular perturbation and the energy of folds, J. Nonlinear Sci., Volume 10 (2000), pp. 355-390

[15] L. Modica The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987), pp. 123-142

[16] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, Preprint

[17] A. Poliakovsky, On a singular perturbation problem related to optimal lifting in BV-space, Preprint

[18] P. Sternberg The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., Volume 101 (1988), pp. 209-260

[19] A.I. Volpert; S.I. Hudjaev Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Martinus Nijhoff, Dordrecht, 1985

Cité par Sources :

Commentaires - Politique