[Une méthode de construction des bornes supérieures pour des problèmes de perturbation singulières]
On présente deux applications d'une nouvelle méthode pour construire des bornes supérieures pour des problèmes de perturbation singulière où interviennent des applications à variation bornée. On applique cette méthode à deux problèmes, l'un du premier ordre et l'autre du second. Le premier est un problème de minimisation lié à la question de relèvement optimal pour des applications à variation bornée à valeurs dans . Pour ce problème on démontre un théorème de Γ-convergence. Le second problème concerne la fonctionnelle d'Aviles–Giga, , pour laquelle on construit une borne supérieure via une suite de fonctions ayant comme limite une fonction dont le gradient est dans BV.
We present two applications of a new method for proving upper bounds for singular perturbation problems involving maps of bounded variation. The two problems are of first and second order, respectively. The first is a minimization problem, related to the question of optimal lifting for BV-maps with values in , for which we prove a Γ-convergence result. The second problem involves the Aviles–Giga functional, , for which we construct upper bounds via a sequence of functions whose limit has gradient in BV.
Publié le :
Arkady Poliakovsky 1
@article{CRMATH_2005__341_2_97_0, author = {Arkady Poliakovsky}, title = {A method for establishing upper bounds for singular perturbation problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--102}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.009}, language = {en}, }
Arkady Poliakovsky. A method for establishing upper bounds for singular perturbation problems. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 97-102. doi : 10.1016/j.crma.2005.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.009/
[1] Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 17 (1990), pp. 439-478
[2] Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 327-355
[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, New York, 2000
[4] A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ., Volume 12 (1987), pp. 1-16
[5] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999), pp. 1-17
[6] S. Conti, C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Preprint
[7] Lifting of BV functions with values in , C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 159-164
[8] An example in the gradient theory of phase transitions, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 285-289 (electronic)
[9] A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 833-844
[10] The geometry of the phase diffusion equation, J. Nonlinear Sci., Volume 10 (2000), pp. 223-274
[11] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992
[12] Minimal Surfaces and Functions of Bounded Variation, Monographs Math., vol. 80, Birkhäuser, Basel, 1984
[13] R. Ignat, A. Poliakovsky, An example related to optimal lifting in BV-space, Preprint
[14] Singular perturbation and the energy of folds, J. Nonlinear Sci., Volume 10 (2000), pp. 355-390
[15] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987), pp. 123-142
[16] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, Preprint
[17] A. Poliakovsky, On a singular perturbation problem related to optimal lifting in BV-space, Preprint
[18] The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., Volume 101 (1988), pp. 209-260
[19] Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Martinus Nijhoff, Dordrecht, 1985
Cité par Sources :
Commentaires - Politique