We introduce a class of action integrals defined over probability-measure-valued path space. Minimal action exists in this context and gives weak solution to a compressible Euler equation. We prove that the Hamilton–Jacobi PDE associated with such variational formulation of Euler equation is well posed in viscosity solution sense.
Nous introduisons une classe dʼintégrales dʼaction définies sur lʼespace des chemins à valeurs mesures de probabilité. Dans ce contexte lʼaction minimale existe et donne une solution faible dʼune équation dʼEuler compressible. Nous montrons que lʼéquation de Hamilton Jacobi associʼee à la formulation variationnelle de lʼéquation dʼEuler est bien posée dans le sens des solutions de viscosité.
Accepted:
Published online:
Jin Feng 1
@article{CRMATH_2011__349_17-18_973_0, author = {Jin Feng}, title = {A {Hamilton{\textendash}Jacobi} {PDE} in the space of measures and its associated compressible {Euler} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {973--976}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.013}, language = {en}, }
Jin Feng. A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations. Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 973-976. doi : 10.1016/j.crma.2011.08.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.013/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005
[2] A comparison principle for Hamilton–Jacobi equations related to controlled gradient flows in infinite dimensions, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 2, pp. 275-310
[3] Large Deviation for Stochastic Processes, Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006
[4] J. Feng, T. Nguyen, Hamilton–Jacobi equations in space of measures associated with a system of conservation laws, Preprint, 2010.
[5] Mean field games, Japanese J. Math., Volume 2 (2007) no. 1, pp. 229-260
[6] Optimal Transport. Old and New, Fundamental Principles of Mathematical Sciences, vol. 338, Springer-Verlag, Berlin, 2009
Cited by Sources:
Comments - Policy