Comptes Rendus
Mathematical Analysis/Dynamical Systems
Multifractal analysis of multiple ergodic averages
Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 961-964.

In this Note we present a complete solution to the problem of multifractal analysis of multiple ergodic averages in the case of symbolic dynamics for functions of two variables depending on the first coordinate.

Dans cette Note nous présentons une solution complète au problème de lʼanalyse multifractale des moyennes ergodiques multiples dans le cas du système dynamique symbolique pour les fonctions de deux variables dépendant de la première coordonnée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.08.014
Aihua Fan 1; Jörg Schmeling 2; Meng Wu 1

1 LAMFA, UMR 6140 CNRS, Université de Picardie, 33, rue Saint Leu, 80039 Amiens, France
2 MCMS, Lund Institute of Technology, Lund University, Box 118, 221 00 Lund, Sweden
@article{CRMATH_2011__349_17-18_961_0,
     author = {Aihua Fan and J\"org Schmeling and Meng Wu},
     title = {Multifractal analysis of multiple ergodic averages},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {961--964},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.014},
     language = {en},
}
TY  - JOUR
AU  - Aihua Fan
AU  - Jörg Schmeling
AU  - Meng Wu
TI  - Multifractal analysis of multiple ergodic averages
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 961
EP  - 964
VL  - 349
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2011.08.014
LA  - en
ID  - CRMATH_2011__349_17-18_961_0
ER  - 
%0 Journal Article
%A Aihua Fan
%A Jörg Schmeling
%A Meng Wu
%T Multifractal analysis of multiple ergodic averages
%J Comptes Rendus. Mathématique
%D 2011
%P 961-964
%V 349
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2011.08.014
%G en
%F CRMATH_2011__349_17-18_961_0
Aihua Fan; Jörg Schmeling; Meng Wu. Multifractal analysis of multiple ergodic averages. Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 961-964. doi : 10.1016/j.crma.2011.08.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.014/

[1] A.H. Fan Sur les dimension de mesures, Studia Math., Volume 111 (1994), pp. 1-17

[2] A.H. Fan, L.M. Liao, J.H. Ma, Level sets of multiple ergodic averages, preprint, 2009.

[3] A.H. Fan; L.M. Liao; J. Peyrière Generic points in systems of specification and Banach valued Birkhff ergodic average, DCDS, Volume 21 (2008), pp. 1103-1128

[4] A.H. Fan, J. Schmeling, M. Wu, Multiple ergodic averages and nonlinear transfer operators, preprint, 2011.

[5] R. Kenyon, Y. Peres, B. Solomyak, Hausdorff dimension for fractals invariant under the multiplicative integers, preprint, 2011.

[6] Y. Peres, B. Solomyak, Dimension spectrum for a nonconventional ergodic average, preprint, 2011.

Cited by Sources:

Comments - Policy


Articles of potential interest

Hausdorff dimension of the multiplicative golden mean shift

Richard Kenyon; Yuval Peres; Boris Solomyak

C. R. Math (2011)