We prove the bounded isometry conjecture proposed by F. Lalonde and L. Polterovich for a special class of closed symplectic manifolds.
Nous prouvons la conjecture dʼisométrie bornée proposée par F. Lalonde et L. Polterovich pour une classe spéciale de variétés symplectiques fermées.
Accepted:
Published online:
Andrés Pedroza 1
@article{CRMATH_2011__349_19-20_1097_0, author = {Andr\'es Pedroza}, title = {On the bounded isometry conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {1097--1100}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.08.016}, language = {en}, }
Andrés Pedroza. On the bounded isometry conjecture. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1097-1100. doi : 10.1016/j.crma.2011.08.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.016/
[1] C. Campos-Apanco, A. Pedroza, Bounded symplectic diffeomorphisms and split flux groups, Proc. of Amer. Math. Soc., in press.
[2] Bi-invariant metrics on the group of symplectomorphisms, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3343-3357
[3] The bounded isometry conjecture for the Kodaira–Thurston manifold and 4-torus, Israel J. Math., Volume 176 (2010), pp. 285-306
[4] Stabilization of symplectic inequalities and applications, Amer. Math. Soc. Transl., Volume 196 (1999), pp. 63-72
[5] Symplectic diffeomorphisms as isometries of Hoferʼs norm, Topology, Volume 36 (1997), pp. 711-727
[6] Introduction to Symplectic Topology, Oxford University Press, 1994
[7] The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001
Cited by Sources:
Comments - Policy