[Sur la représentation adjointe de
Nous décomposons la représentation adjointe de
We decompose the adjoint representation of
Accepté le :
Publié le :
Pamela E. Harris 1
@article{CRMATH_2011__349_17-18_935_0, author = {Pamela E. Harris}, title = {On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the {Fibonacci} numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {935--937}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.017}, language = {en}, }
Pamela E. Harris. On the adjoint representation of $ {\mathfrak{sl}}_{n}$ and the Fibonacci numbers. Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 935-937. doi : 10.1016/j.crma.2011.08.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.017/
[1] C. Cochet, Vector partition function and representation theory, Conference Proceedings Formal Power Series and Algebraic Combinatorics, Taormina, Sicile, 2005, 12 pages.
[2] Symmetry, Representations and Invariants, Springer, New York, 2009
[3] Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990
[4] A formula for the multiplicity of a weight, Proc. Natl. Acad. Sci. USA, Volume 44 (1958), pp. 588-589
[5] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032
[6] Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque, Volume 101–102 (1983), pp. 208-229
[7] Fibonacciʼs Liber Abaci, Springer-Verlag, New York, 2002
Cité par Sources :
Commentaires - Politique