[Problème de Cauchy caractéristique pour les équations dʼEinstein–Vlasov–Champ Scalaire en dimension quelconque]
On établit et résout sur la réunion de deux hypersurfaces caractéristiques régulières sécantes, un système hiérarchisé dʼéquations des contraintes compatibles avec la preuve dʼun théorème dʼexistence pour les équations dʼEinstein–Vlasov–Champ Scalaire en jauge temporelle.
We derive and solve on two null intersecting smooth hypersurfaces, a set of hierarchical constraints equations, suitable with the proof of an existence theorem for the Einstein equations with Vlasov and Scalar matters, in temporal gauge.
Accepté le :
Publié le :
Jean Baptiste Patenou 1
@article{CRMATH_2011__349_19-20_1053_0, author = {Jean Baptiste Patenou}, title = {Characteristic {Cauchy} problem for the {Einstein} equations with {Vlasov} and {Scalar} matters in arbitrary dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1053--1058}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.08.018}, language = {en}, }
TY - JOUR AU - Jean Baptiste Patenou TI - Characteristic Cauchy problem for the Einstein equations with Vlasov and Scalar matters in arbitrary dimension JO - Comptes Rendus. Mathématique PY - 2011 SP - 1053 EP - 1058 VL - 349 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2011.08.018 LA - en ID - CRMATH_2011__349_19-20_1053_0 ER -
%0 Journal Article %A Jean Baptiste Patenou %T Characteristic Cauchy problem for the Einstein equations with Vlasov and Scalar matters in arbitrary dimension %J Comptes Rendus. Mathématique %D 2011 %P 1053-1058 %V 349 %N 19-20 %I Elsevier %R 10.1016/j.crma.2011.08.018 %G en %F CRMATH_2011__349_19-20_1053_0
Jean Baptiste Patenou. Characteristic Cauchy problem for the Einstein equations with Vlasov and Scalar matters in arbitrary dimension. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1053-1058. doi : 10.1016/j.crma.2011.08.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.018/
[1] Global characteristic problem for Einstein Vacuum equations with small initial data (I): The initial data constraints, JHDE, Volume 2 (2005) no. 1, pp. 201-277
[2] General Relativity and Gravitational Physics (U. Bruzzo; R. Cianci; E. Massa, eds.), World Scientific, Singapore, 1987
[3] Problème de Cauchy pour le système intégro différentiel dʼEinstein–Liouville, Annales de lʼInstitut Fourier, Volume 21 (1971) no. 3, pp. 181-201
[4] Système de Yang–Mills–Vlasov en jauge temporelle, Annales de lʼInstitut Henri Poincaré, Volume 55 (1991) no. 3, pp. 759-787
[5] The Evolution Problem in General Relativity, Progress in Mathematical Physics, Birkhäuser, 2003
[6] J.B. Patenou, Doctorat/PhD thesis, University of Yaounde I (Cameroon), in preparation.
[7] Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. Roy. Soc. Lond. A, Volume 427 (1990), pp. 221-239
[8] Strongly hyperbolic systems in general relativity, JHDE, Volume 1 (2004) no. 2, pp. 251-269
Cité par Sources :
Commentaires - Politique