[Solutions faibles des équations dʼEuler incompressibles avec nappe de tourbillon comme donnée initiale]
Nous construisons une infinité de solutions faibles admissibles des équations dʼEuler incompressibles avec nappes de tourbillons classiques pour données initiales. La construction repose sur la méthode introduite récemment dans De Lellis et Székelyhidi Jr. (2009, 2010) [2,3] faisant appel à lʼintégration convexe. En particulier, la vorticité nʼest pas une mesure bornée. Au lieu de cela, lʼénergie décroît en temps, à cause dʼune zone turbulente, entourant la nappe de tourbillon et augmentant linéairement en temps.
We construct infinitely many admissible weak solutions to the incompressible Euler equations with initial data given by the classical vortex sheet. The construction is based on the method introduced recently in De Lellis and Székelyhidi Jr. (2009, 2010) [2,3] using convex integration. In particular, the vorticity is not a bounded measure. Instead, the energy decreases in time due to a linearly expanding turbulent zone around the vortex sheet.
Accepté le :
Publié le :
László Székelyhidi 1
@article{CRMATH_2011__349_19-20_1063_0, author = {L\'aszl\'o Sz\'ekelyhidi}, title = {Weak solutions to the incompressible {Euler} equations with vortex sheet initial data}, journal = {Comptes Rendus. Math\'ematique}, pages = {1063--1066}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.09.009}, language = {en}, }
TY - JOUR AU - László Székelyhidi TI - Weak solutions to the incompressible Euler equations with vortex sheet initial data JO - Comptes Rendus. Mathématique PY - 2011 SP - 1063 EP - 1066 VL - 349 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2011.09.009 LA - en ID - CRMATH_2011__349_19-20_1063_0 ER -
László Székelyhidi. Weak solutions to the incompressible Euler equations with vortex sheet initial data. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1063-1066. doi : 10.1016/j.crma.2011.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.09.009/
[1] Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys., Volume 305 (2011), pp. 315-361
[2] The Euler equations as a differential inclusion, Ann. Math. (2), Volume 170 (2009) no. 3, pp. 1417-1436
[3] On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 225-260
[4] Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 553-586
[5] Mathematical Topics in Fluid Mechanics, vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press Oxford University Press, New York, 1996 (Incompressible models, Oxford Science Publications)
[6] An inviscid flow with compact support in space–time, J. Geom. Anal., Volume 3 (1993) no. 4, pp. 343-401
[7] On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., Volume 50 (1997) no. 12, pp. 1261-1286
[8] L. Székelyhidi Jr., E. Wiedemann, Young measures generated by ideal incompressible fluid flows, Preprint, 2011.
[9] Existence of weak solutions for the incompressible Euler equations, Annales de lʼInstitut Henri Poincare (C) Non Linear Analysis, Volume 28 (2011) no. 5, pp. 727-730
Cité par Sources :
Commentaires - Politique