[Une démonstration simple d'une estimation de rigidité pour deux puits]
Nous donnons une démonstration simple d'une estimation de rigidité de Müller et Chaudhuri pour deux puits fortement incompatibles. Nous employons un argument de Ball et James pour montrer que l'incompatibilité pour les mesures de Young engendrées par des gradients permet de réduire les estimations de rigidité pour plusieurs puits à celles pour un puit.
We give a short proof of the rigidity estimate of Müller and Chaudhuri for two strongly incompatible wells. Making strong use of the arguments of Ball and James our approach shows that incompatibility for gradient Young measures can be used to reduce rigidity estimates for several wells to one-well rigidity.
Accepté le :
Publié le :
Camillo De Lellis 1 ; László Székelyhidi 2
@article{CRMATH_2006__343_5_367_0, author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi}, title = {Simple proof of two-well rigidity}, journal = {Comptes Rendus. Math\'ematique}, pages = {367--370}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.07.008}, language = {en}, }
Camillo De Lellis; László Székelyhidi. Simple proof of two-well rigidity. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 367-370. doi : 10.1016/j.crma.2006.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.008/
[1] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation
[2] Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations, Volume 19 (2004) no. 4, pp. 379-390
[3] N. Chaudhuri, S. Müller, Scaling of the energy for thin martensitic films, Preprint MPI-MIS Leipzig 59, 2004
[4] A new approach to counterexamples to estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., Volume 175 (2005), pp. 287-300
[5] Rigidity and Γ-convergence for solid-solid phase transitions with -invariance, Comm. Pure Appl. Math., Volume 59 (2006), pp. 830-868
[6] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506
[7] Differentiation of Integrals in , Lecture Notes in Mathematics, vol. 481, Springer-Verlag, 1975
[8] Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math., Volume 3 (1992) no. 1, pp. 31-54
Cité par Sources :
Commentaires - Politique