[Une forme hermitienne naturelle associée aux familles de variétés compactes Kähleriennes dont la première classe de Chern est nulle]
Soit
Let
Accepté le :
Publié le :
Gunnar Magnússon 1
@article{CRMATH_2012__350_1-2_63_0, author = {Gunnar Magn\'usson}, title = {A natural hermitian metric associated with local universal families of compact {K\"ahler} manifolds with zero first {Chern} class}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--66}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.013}, language = {en}, }
TY - JOUR AU - Gunnar Magnússon TI - A natural hermitian metric associated with local universal families of compact Kähler manifolds with zero first Chern class JO - Comptes Rendus. Mathématique PY - 2012 SP - 63 EP - 66 VL - 350 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2011.11.013 LA - en ID - CRMATH_2012__350_1-2_63_0 ER -
%0 Journal Article %A Gunnar Magnússon %T A natural hermitian metric associated with local universal families of compact Kähler manifolds with zero first Chern class %J Comptes Rendus. Mathématique %D 2012 %P 63-66 %V 350 %N 1-2 %I Elsevier %R 10.1016/j.crma.2011.11.013 %G en %F CRMATH_2012__350_1-2_63_0
Gunnar Magnússon. A natural hermitian metric associated with local universal families of compact Kähler manifolds with zero first Chern class. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 63-66. doi : 10.1016/j.crma.2011.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.013/
[1] On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2), Volume 71 (1960), pp. 43-76 MR 0115189 (22 #5991)
[2] Weil–Petersson metric in the moduli space of compact polarized Kähler–Einstein manifolds of zero first Chern class, Manuscripta Math., Volume 54 (1986) no. 4, pp. 405-438 MR 829406 (87k:32038)
[3] On the geometry of moduli spaces, Manuscripta Math., Volume 50 (1985), pp. 229-267 MR 784145 (86j:32049)
[4] Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric, San Diego, Calif., 1986 (Adv. Ser. Math. Phys.), Volume vol. 1, World Sci. Publishing, Singapore (1987), pp. 629-646 (MR 915841)
[5] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 MR 480350 (81d:53045)
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier