We realize the Reeb foliation of as a family of Legendrian submanifolds of the unit . Moreover, we construct a deformation of the standard contact in , via a family of contact submanifolds, into this realization.
Nous réalisons le feuilletage de Reeb comme une famille de sous-variétés legendriennes de la sphère unité dans . Par ailleurs, nous construisons une déformation de la structure de contact canonique dans via une famille de sous-variétés de contact, aboutissant au feuilletage ainsi réalisé.
Accepted:
Published online:
Atsuhide Mori 1
@article{CRMATH_2012__350_1-2_67_0,
author = {Atsuhide Mori},
title = {The {Reeb} foliation arises as a family of {Legendrian} submanifolds at the end of a deformation of the standard $ {S}^{3}$ in $ {S}^{5}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {67--70},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {1-2},
doi = {10.1016/j.crma.2012.01.001},
language = {en},
}
TY - JOUR
AU - Atsuhide Mori
TI - The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard $ {S}^{3}$ in $ {S}^{5}$
JO - Comptes Rendus. Mathématique
PY - 2012
SP - 67
EP - 70
VL - 350
IS - 1-2
PB - Elsevier
DO - 10.1016/j.crma.2012.01.001
LA - en
ID - CRMATH_2012__350_1-2_67_0
ER -
%0 Journal Article
%A Atsuhide Mori
%T The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard $ {S}^{3}$ in $ {S}^{5}$
%J Comptes Rendus. Mathématique
%D 2012
%P 67-70
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2012.01.001
%G en
%F CRMATH_2012__350_1-2_67_0
Atsuhide Mori. The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard $ {S}^{3}$ in $ {S}^{5}$. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 67-70. doi: 10.1016/j.crma.2012.01.001
[1] A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA, Volume 9 (1923), pp. 93-95
[2] Contact structures on 3-manifolds are deformations of foliations, Int. Math. Res. Notices, Volume 14 (2007), pp. 775-779
[3] E. Giroux, Géometrie de contact de la dimension trois vers les dimensions supérieures, in: Proc. ICM2002, Beijing, vol. II, pp. 405–414.
[4] Contact embeddings in standard contact spheres via approximately holomorphic geometry, J. Math. Sci. Univ. Tokyo, Volume 18 (2011), pp. 139-154
[5] A note on Thurston–Winkelnkemperʼs construction of contact forms on 3-manifolds, Osaka J. Math., Volume 39 (2002), pp. 1-11
[6] Global models of contact forms, J. Math. Sci. Univ. Tokyo, Volume 11 (2004), pp. 447-454
[7] Reeb foliations on and contact 5-manifolds violating the Thurston–Bennequin inequality, 2009 (preprint) | arXiv
[8] On the existence of contact forms, Proc. AMS, Volume 52 (1975), pp. 345-347
Cited by Sources:
Comments - Policy
