In this Note, a new sharp sufficient condition for exact sparse recovery by -penalized minimization from linear measurements is proposed. The main contribution of this paper is to show that, for most matrices, this condition is also necessary. Moreover, when the minimizer is unique, we investigate its sensitivity to the measurements and we establish that the application associating the measurements to this minimizer is Lipschitz-continuous.
Dans cette Note, une nouvelle condition suffisante pour lʼidentifiabilité parcimonieuse par minimisation pénalisée à partir de mesures linéaires est proposée. La contribution majeure de ce travail est de prouver que pour la plupart des matrices, cette condition est aussi nécessaire. Par ailleurs, lorsque le minimiseur du problème est unique, sa sensibilité aux mesures est étudiée et il est montré que lʼapplication qui envoie les mesures sur ce minimiseur est Lipschitz-continue.
Accepted:
Published online:
Charles Dossal 1
@article{CRMATH_2012__350_1-2_117_0, author = {Charles Dossal}, title = {A necessary and sufficient condition for exact sparse recovery by $ {\ell }_{1}$ minimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--120}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.014}, language = {en}, }
Charles Dossal. A necessary and sufficient condition for exact sparse recovery by $ {\ell }_{1}$ minimization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 117-120. doi : 10.1016/j.crma.2011.12.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.014/
[1] Near ideal model selection by minimization, Ann. Statist., Volume 37 (2009), pp. 2145-2177
[2] D. Donoho, Neighborly polytopes and sparse solution of underdetermined linear equations, Preprint, 2004.
[3] D. Donoho, J. Tanner, Neighborliness of randomly-projected simplices in high dimensions, Preprint, 2005.
[4] A numerical exploration of compressed sampling recovery, Linear Algebra Appl., Volume 432 (2010), pp. 1663-1679
[5] Sharp support recovery from noisy random measurements by minimization, Appl. Comput. Harmon. Anal. (2011) | DOI
[6] On sparse representations in arbitrary redundant bases, IEEE Trans. Inform. Theory, Volume 50 (2004), pp. 1341-1344
[7] Just relax: convex programming methods for identifying sparse signals in noise, IEEE Trans. Inform. Theory, Volume 52 (2006), pp. 1030-1051
[8] Sharp thresholds for high-dimensional and noisy sparsity recovery using -constrained quadratic programming (lasso), IEEE Trans. Inform. Theory, Volume 55 (2009) no. 5, pp. 2183-2202
Cited by Sources:
Comments - Policy