Let ω be a domain in . The classical approach to the Neumann problem for a nonlinearly elastic plate consists in seeking a displacement field that minimizes a non-quadratic functional over . We show that this problem can be recast as a minimization problem in terms of the new unknowns and and that this problem has a solution in a manifold of symmetric matrices and whose components and satisfy nonlinear compatibility conditions of Saint-Venant type. We also show that such an “intrinsic approach” naturally leads to a new definition of polyconvexity.
Soit ω un domaine de . Lʼapproche classique du problème de Neumann pour une plaque non linéairement élastique consiste à chercher un champ de déplacements qui minimise une fonctionnelle non quadratique sur . Nous montrons que ce problème peut être ré-écrit comme un problème de minimisation en termes des nouvelles inconnues et et que ce problème a une solution dans une variété de matrices symétriques et dont les composantes et satisfont des conditions non linéaires de compatibilité du type de Saint-Venant. Nous montrons également quʼune telle « approche intrinsèque » conduit naturellement à une nouvelle définition de polyconvexité.
Published online:
Philippe G. Ciarlet 1; Sorin Mardare 2
@article{CRMATH_2012__350_1-2_111_0, author = {Philippe G. Ciarlet and Sorin Mardare}, title = {An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--116}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.11.001}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Sorin Mardare TI - An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates JO - Comptes Rendus. Mathématique PY - 2012 SP - 111 EP - 116 VL - 350 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2011.11.001 LA - en ID - CRMATH_2012__350_1-2_111_0 ER -
Philippe G. Ciarlet; Sorin Mardare. An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 111-116. doi : 10.1016/j.crma.2011.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.001/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403
[2] A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg., Volume 17/18 (1979), pp. 227-258
[3] Nonlinear Saint-Venant compatibility conditions for nonlinearly elastic plates, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 23–24, pp. 1297-1302
[4] P.G. Ciarlet, S. Mardare, Saint-Venant compatibility conditions and a notion of polyconvexity in nonlinear plate theory, in preparation.
Cited by Sources:
Comments - Policy