We study Lusztigʼs t-analog of weight multiplicities, or affine Kostka–Foulkes polynomials, associated to level one representations of twisted affine Kac–Moody algebras. We obtain an explicit closed form expression for the unique t-string function, using constant term identities of Macdonald and Cherednik. This extends previous work on t-string functions for the untwisted simply-laced affine Kac–Moody algebras.
On étudie le t-analogue, dʼaprès Lusztig, des multiplicités des poids, cʼest-à-dire les polynômes de Kostka–Foulkes affines, associés aux représentations du niveau un des algèbres de Kac–Moody affines tordues. On obtient une expression explicite pour lʼunique t-fonction de corde, en utilisant les identités de Macdonald et Cherednik. Cela étend des travaux précédents sur les t-fonctions de corde pour les algèbres de Kac–Moody affines non-tordues de type A-D-E.
Accepted:
Published online:
Sachin S. Sharma 1; Sankaran Viswanath 1
@article{CRMATH_2012__350_3-4_133_0, author = {Sachin S. Sharma and Sankaran Viswanath}, title = {The \protect\emph{t}-analog of the level one string function for twisted affine {Kac{\textendash}Moody} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--136}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.021}, language = {en}, }
TY - JOUR AU - Sachin S. Sharma AU - Sankaran Viswanath TI - The t-analog of the level one string function for twisted affine Kac–Moody algebras JO - Comptes Rendus. Mathématique PY - 2012 SP - 133 EP - 136 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.021 LA - en ID - CRMATH_2012__350_3-4_133_0 ER -
Sachin S. Sharma; Sankaran Viswanath. The t-analog of the level one string function for twisted affine Kac–Moody algebras. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 133-136. doi : 10.1016/j.crma.2012.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.021/
[1] Limits of weight spaces, Lusztigʼs q-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc., Volume 2 (1989) no. 3, pp. 517-533
[2] The strong Macdonald conjecture and Hodge theory on the loop Grassmannian, Ann. of Math. (2), Volume 168 (2008) no. 1, pp. 175-220
[3] The Cherednik kernel and generalized exponents, Int. Math. Res. Not., Volume 36 (2004), pp. 1869-1895
[4] Infinite Dimensional Lie Algebras, Cambridge University Press, 1990
[5] Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Volume 53 (1984) no. 2, pp. 125-264
[6] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032
[7] A Brylinski filtration for affine Kac–Moody algebras, Adv. Math., Volume 229 (2012) no. 2, pp. 968-983
[8] Kostka–Foulkes polynomials for symmetrizable Kac–Moody algebras, Sém. Lothar. Combin., Volume 58 (2008) (Art. B58f)
Cited by Sources:
Comments - Policy