Comptes Rendus
Partial Differential Equations/Numerical Analysis
A new error bound for reduced basis approximation of parabolic partial differential equations
Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 203-207.

We consider a space–time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov–Galerkin truth finite element discretization with favorable discrete inf-sup constant βδ: βδ is unity for the heat equation; βδ grows only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time a posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates.

Nous considérons une formulation variationnelle espace–temps pour les équations différentielles paraboliques linéaires. Nous y associons une discrétisation par éléments finis de Petrov–Galerkin pour laquelle la constante de stabilité inf-sup βδ possède des propriétés agréables : βδ est unité pour lʼéquation de la chaleur ; βδ a une croissance seulement linéaire en temps pour des opérateurs de convection non-coercifs (mais asymptotiquement stables). Dans le cadre des approximations par bases réduites, cette dernière propriété permet dʼobtenir des bornes efficaces pour lʼerreur a posteriori en temps long, en net contraste avec les estimateurs dʼerreur en énergie classiques (pessimistes) qui présentent une croissance exponentielle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.01.026

Karsten Urban 1; Anthony T. Patera 2

1 University of Ulm, Institute for Numerical Mathematics, Helmholtzstr. 18, 89081 Ulm, Germany
2 Mechanical Engineering Department, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge, MA 02139-4307, USA
@article{CRMATH_2012__350_3-4_203_0,
     author = {Karsten Urban and Anthony T. Patera},
     title = {A new error bound for reduced basis approximation of parabolic partial differential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {203--207},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.026},
     language = {en},
}
TY  - JOUR
AU  - Karsten Urban
AU  - Anthony T. Patera
TI  - A new error bound for reduced basis approximation of parabolic partial differential equations
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 203
EP  - 207
VL  - 350
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2012.01.026
LA  - en
ID  - CRMATH_2012__350_3-4_203_0
ER  - 
%0 Journal Article
%A Karsten Urban
%A Anthony T. Patera
%T A new error bound for reduced basis approximation of parabolic partial differential equations
%J Comptes Rendus. Mathématique
%D 2012
%P 203-207
%V 350
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2012.01.026
%G en
%F CRMATH_2012__350_3-4_203_0
Karsten Urban; Anthony T. Patera. A new error bound for reduced basis approximation of parabolic partial differential equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 203-207. doi : 10.1016/j.crma.2012.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.026/

[1] M. Grepl; A.T. Patera A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, M2AN Math. Model. Numer. Anal., Volume 39 (2005) no. 1, pp. 157-181

[2] B. Haasdonk; M. Ohlberger Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN Math. Model. Numer. Anal., Volume 42 (2008), pp. 277-302

[3] D.J. Knezevic; N.C. Nguyen; A.T. Patera Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 7, pp. 1415-1442

[4] D.V. Rovas; L. Machiels; Y. Maday Reduced-basis output bound methods for parabolic problems, IMA J. Numer. Anal., Volume 26 (2006) no. 3, pp. 423-445

[5] G. Rozza; D.B.P. Huynh; A.T. Patera Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations – Application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008) no. 3, pp. 229-275

[6] C. Schwab; R. Stevenson Space–time adaptive wavelet methods for parabolic evolution problems, Math. Comp., Volume 78 (2009), pp. 1293-1318

[7] K. Steih, K. Urban, Space–time reduced basis methods for time-periodic parabolic problems, University of Ulm, Preprint, 2012, www.uni-ulm.de/mawi/fakultaet/forschung/preprint-server.html.

[8] S. Vallaghé, A. Le-Hyaric, M. Fouquemberg, C. Prudʼhomme, A successive constraint method with minimal offline constraints for lower bounds of parametric coercivity constant, Preprint, hal-00609212, http://hal.archives-ouvertes.fr.

Cited by Sources:

Comments - Policy