We consider a space–time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov–Galerkin truth finite element discretization with favorable discrete inf-sup constant : is unity for the heat equation; grows only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time a posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates.
Nous considérons une formulation variationnelle espace–temps pour les équations différentielles paraboliques linéaires. Nous y associons une discrétisation par éléments finis de Petrov–Galerkin pour laquelle la constante de stabilité inf-sup possède des propriétés agréables : est unité pour lʼéquation de la chaleur ; a une croissance seulement linéaire en temps pour des opérateurs de convection non-coercifs (mais asymptotiquement stables). Dans le cadre des approximations par bases réduites, cette dernière propriété permet dʼobtenir des bornes efficaces pour lʼerreur a posteriori en temps long, en net contraste avec les estimateurs dʼerreur en énergie classiques (pessimistes) qui présentent une croissance exponentielle.
Accepted:
Published online:
Karsten Urban 1; Anthony T. Patera 2
@article{CRMATH_2012__350_3-4_203_0, author = {Karsten Urban and Anthony T. Patera}, title = {A new error bound for reduced basis approximation of parabolic partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {203--207}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.026}, language = {en}, }
TY - JOUR AU - Karsten Urban AU - Anthony T. Patera TI - A new error bound for reduced basis approximation of parabolic partial differential equations JO - Comptes Rendus. Mathématique PY - 2012 SP - 203 EP - 207 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.026 LA - en ID - CRMATH_2012__350_3-4_203_0 ER -
Karsten Urban; Anthony T. Patera. A new error bound for reduced basis approximation of parabolic partial differential equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 203-207. doi : 10.1016/j.crma.2012.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.026/
[1] A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, M2AN Math. Model. Numer. Anal., Volume 39 (2005) no. 1, pp. 157-181
[2] Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN Math. Model. Numer. Anal., Volume 42 (2008), pp. 277-302
[3] Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 7, pp. 1415-1442
[4] Reduced-basis output bound methods for parabolic problems, IMA J. Numer. Anal., Volume 26 (2006) no. 3, pp. 423-445
[5] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations – Application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008) no. 3, pp. 229-275
[6] Space–time adaptive wavelet methods for parabolic evolution problems, Math. Comp., Volume 78 (2009), pp. 1293-1318
[7] K. Steih, K. Urban, Space–time reduced basis methods for time-periodic parabolic problems, University of Ulm, Preprint, 2012, www.uni-ulm.de/mawi/fakultaet/forschung/preprint-server.html.
[8] S. Vallaghé, A. Le-Hyaric, M. Fouquemberg, C. Prudʼhomme, A successive constraint method with minimal offline constraints for lower bounds of parametric coercivity constant, Preprint, hal-00609212, http://hal.archives-ouvertes.fr.
Cited by Sources:
Comments - Policy