Comptes Rendus
Partial Differential Equations/Mathematical Physics
Dissipation anomaly and energy cascade in 3D incompressible flows
Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 199-202.

The purpose of this Note is to present a mathematical evidence of the dissipation anomaly in 3D turbulent flows within a general setting for the study of energy cascade in physical scales of 3D incompressible flows recently introduced by the authors.

Le but de cette Note est de présenter une mise en évidence mathématique de la dissipation anormale pour des flots turbulents tridimensionnels, dans un cadre général récemment introduit par les auteurs pour lʼétude de la cascade énergétique aux échelles physiques dans les fluides incompressibles en trois dimensions.

Published online:
DOI: 10.1016/j.crma.2012.01.009

Radu Dascaliuc 1; Zoran Grujić 2

1 Department of Mathematics, Oregon State University, Corvallis, OR 97332, USA
2 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
     author = {Radu Dascaliuc and Zoran Gruji\'c},
     title = {Dissipation anomaly and energy cascade in {3D} incompressible flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {199--202},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.009},
     language = {en},
AU  - Radu Dascaliuc
AU  - Zoran Grujić
TI  - Dissipation anomaly and energy cascade in 3D incompressible flows
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 199
EP  - 202
VL  - 350
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2012.01.009
LA  - en
ID  - CRMATH_2012__350_3-4_199_0
ER  - 
%0 Journal Article
%A Radu Dascaliuc
%A Zoran Grujić
%T Dissipation anomaly and energy cascade in 3D incompressible flows
%J Comptes Rendus. Mathématique
%D 2012
%P 199-202
%V 350
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2012.01.009
%G en
%F CRMATH_2012__350_3-4_199_0
Radu Dascaliuc; Zoran Grujić. Dissipation anomaly and energy cascade in 3D incompressible flows. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 199-202. doi : 10.1016/j.crma.2012.01.009.

[1] A. Cheskidov; P. Constantin; S. Friedlander; R. Shvydkoy Energy conservation and Onsagerʼs conjecture for the Euler equations, Nonlinearity, Volume 21 (2008), p. 1233

[2] P. Constantin; W. E; E. Titi Onsagerʼs conjecture on the energy conservation for solutions of Eulerʼs equation, Comm. Math. Phys., Volume 165 (1994), p. 207

[3] R. Dascaliuc; Z. Grujić Energy cascades and flux locality in physical scales of the 3D NSE, Comm. Math. Phys., Volume 305 (2011), p. 199

[4] R. Dascaliuc; Z. Grujić Anomalous dissipation and energy cascade in 3D inviscid flows, Comm. Math. Phys., Volume 309 (2012), p. 757

[5] J. Duchon; R. Robert Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations, Nonlinearity, Volume 13 (2000), p. 249

[6] G. Eyink Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D, Volume 78 (1994), p. 222

[7] G. Eyink Dissipative anomalies in singular Euler flows, Phys. D, Volume 237 (2008), p. 1956

[8] G. Eyink; K. Sreenivasan Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., Volume 78 (2006), p. 87

[9] C. Foias; O. Manley; R. Rosa; R. Temam Estimates for the energy cascade in three-dimensional turbulent flows, C. R. Acad. Sci. Paris, Sér. I, Volume 333 (2001), p. 499

[10] U. Frisch Turbulence, Cambridge University Press, 1995 (The legacy of A.N. Kolmogorov)

[11] A.N. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, Volume 30 (1941), p. 9

[12] L. Onsager Statistical hydrodynamics, Nuovo Cimento (9), Volume 6 (1949) no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), p. 279

[13] R. Shvydkoy Lectures on the Onsager conjecture, Discrete Contin. Dynam. Systems S, Volume 3 (2010), p. 473

Cited by Sources:

Comments - Policy