Comptes Rendus
Partial Differential Equations
Infinitely many solutions for a class of nonlinear elliptic problems on fractals
Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 187-191.

We study the nonlinear problem Δu+a(x)u=λg(x)f(u) in VV0, u=0 on V0, where V is the Sierpiński gasket, V0 is its intrinsic boundary, Δ denotes the weak Laplace operator, λ is a positive parameter, and f has an oscillatory behaviour either near the origin or at infinity. In both cases, we establish the existence of infinitely many solutions, which either converge to zero or have larger and larger energies.

On étudie le problème non linéaire Δu+a(x)u=λg(x)f(u) dans VV0, u=0 sur V0, où V est le joint de culasse de Sierpiński, V0 est sa frontière intrinsèque, Δ dénote lʼopérateur de Laplace au sens faible, λ est un paramètre positif et f a un comportement oscillatoire autour de lʼorigine ou à lʼinfini. Dans les deux cas on établit lʼexistence dʼune infinité de solutions, qui ou bien convergent vers à zéro, ou bien ont des énergies de plus en plus grandes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.01.027

Gabriele Bonanno 1; Giovanni Molica Bisci 2; Vicenţiu Rădulescu 3, 4

1 Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, 98166 Messina, Italy
2 Dipartimento MECMAT, University of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria, Italy
3 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
4 Department of Mathematics, University of Craiova, A.I. Cuza Street No. 13, 200585 Craiova, Romania
@article{CRMATH_2012__350_3-4_187_0,
     author = {Gabriele Bonanno and Giovanni Molica Bisci and Vicen\c{t}iu R\u{a}dulescu},
     title = {Infinitely many solutions for a class of nonlinear elliptic problems on fractals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {187--191},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.027},
     language = {en},
}
TY  - JOUR
AU  - Gabriele Bonanno
AU  - Giovanni Molica Bisci
AU  - Vicenţiu Rădulescu
TI  - Infinitely many solutions for a class of nonlinear elliptic problems on fractals
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 187
EP  - 191
VL  - 350
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2012.01.027
LA  - en
ID  - CRMATH_2012__350_3-4_187_0
ER  - 
%0 Journal Article
%A Gabriele Bonanno
%A Giovanni Molica Bisci
%A Vicenţiu Rădulescu
%T Infinitely many solutions for a class of nonlinear elliptic problems on fractals
%J Comptes Rendus. Mathématique
%D 2012
%P 187-191
%V 350
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2012.01.027
%G en
%F CRMATH_2012__350_3-4_187_0
Gabriele Bonanno; Giovanni Molica Bisci; Vicenţiu Rădulescu. Infinitely many solutions for a class of nonlinear elliptic problems on fractals. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 187-191. doi : 10.1016/j.crma.2012.01.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.027/

[1] G. Bonanno; G. Molica Bisci Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., Volume 2009 (2009), pp. 1-20

[2] G. Bonanno, G. Molica Bisci, V. Rădulescu, Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket, ESAIM Control Optim. Calc. Var., , in press. | DOI

[3] B.E. Breckner; V. Rădulescu; Cs. Varga Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket, Anal. Appl., Volume 9 (2011), pp. 235-248

[4] K.J. Falconer Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2003

[5] K.J. Falconer; J. Hu Nonlinear elliptical equations on the Sierpiński gasket, J. Math. Anal. Appl., Volume 240 (1999), pp. 552-573

[6] M. Fukushima; T. Shima On a spectral analysis for the Sierpiński gasket, Potential Anal., Volume 1 (1992), pp. 1-35

[7] B. Mandelbrot Les objets fractals: forme, hasard et dimension, Flammarion, Paris, 1973

[8] B. Ricceri A general variational principle and some of its applications, J. Comput. Appl. Math., Volume 113 (2000), pp. 401-410

[9] W. Sierpiński Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris, Volume 160 (1915), pp. 302-305

Cited by Sources:

Comments - Policy