We study the nonlinear problem in , on , where V is the Sierpiński gasket, is its intrinsic boundary, Δ denotes the weak Laplace operator, λ is a positive parameter, and f has an oscillatory behaviour either near the origin or at infinity. In both cases, we establish the existence of infinitely many solutions, which either converge to zero or have larger and larger energies.
On étudie le problème non linéaire dans , sur , où V est le joint de culasse de Sierpiński, est sa frontière intrinsèque, Δ dénote lʼopérateur de Laplace au sens faible, λ est un paramètre positif et f a un comportement oscillatoire autour de lʼorigine ou à lʼinfini. Dans les deux cas on établit lʼexistence dʼune infinité de solutions, qui ou bien convergent vers à zéro, ou bien ont des énergies de plus en plus grandes.
Accepted:
Published online:
Gabriele Bonanno 1; Giovanni Molica Bisci 2; Vicenţiu Rădulescu 3, 4
@article{CRMATH_2012__350_3-4_187_0, author = {Gabriele Bonanno and Giovanni Molica Bisci and Vicen\c{t}iu R\u{a}dulescu}, title = {Infinitely many solutions for a class of nonlinear elliptic problems on fractals}, journal = {Comptes Rendus. Math\'ematique}, pages = {187--191}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.027}, language = {en}, }
TY - JOUR AU - Gabriele Bonanno AU - Giovanni Molica Bisci AU - Vicenţiu Rădulescu TI - Infinitely many solutions for a class of nonlinear elliptic problems on fractals JO - Comptes Rendus. Mathématique PY - 2012 SP - 187 EP - 191 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.027 LA - en ID - CRMATH_2012__350_3-4_187_0 ER -
%0 Journal Article %A Gabriele Bonanno %A Giovanni Molica Bisci %A Vicenţiu Rădulescu %T Infinitely many solutions for a class of nonlinear elliptic problems on fractals %J Comptes Rendus. Mathématique %D 2012 %P 187-191 %V 350 %N 3-4 %I Elsevier %R 10.1016/j.crma.2012.01.027 %G en %F CRMATH_2012__350_3-4_187_0
Gabriele Bonanno; Giovanni Molica Bisci; Vicenţiu Rădulescu. Infinitely many solutions for a class of nonlinear elliptic problems on fractals. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 187-191. doi : 10.1016/j.crma.2012.01.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.027/
[1] Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., Volume 2009 (2009), pp. 1-20
[2] G. Bonanno, G. Molica Bisci, V. Rădulescu, Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket, ESAIM Control Optim. Calc. Var., , in press. | DOI
[3] Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket, Anal. Appl., Volume 9 (2011), pp. 235-248
[4] Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2003
[5] Nonlinear elliptical equations on the Sierpiński gasket, J. Math. Anal. Appl., Volume 240 (1999), pp. 552-573
[6] On a spectral analysis for the Sierpiński gasket, Potential Anal., Volume 1 (1992), pp. 1-35
[7] Les objets fractals: forme, hasard et dimension, Flammarion, Paris, 1973
[8] A general variational principle and some of its applications, J. Comput. Appl. Math., Volume 113 (2000), pp. 401-410
[9] Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris, Volume 160 (1915), pp. 302-305
Cited by Sources:
Comments - Policy