Comptes Rendus
Partial Differential Equations/Functional Analysis
The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
[Le spectre essentiel de lʼopérateur intégral volumique en diffraction électromagnétique par un corps homogène]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 193-197.

Nous étudions le spectre essentiel de lʼopérateur intégral volumique fortement singulier décrivant la diffraction dʼondes électromagnétiques. Dans le cas de coefficients constants par morceaux et pour une interface régulière nous démontrons quʼil est fini et que lʼopérateur intégral est Fredholm dʼindice zéro dans H(curl) si et seulement si les perméabilité et permittivité relatives sont différentes de 0 et de −1.

We study the strongly singular volume integral operator that describes the scattering of time-harmonic electromagnetic waves. For the case of piecewise constant material coefficients and smooth interfaces, we determine the essential spectrum. We show that it is a finite set and that the operator is Fredholm of index zero in H(curl) if and only if the relative permeability and permittivity are both different from 0 and −1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.017

Martin Costabel 1 ; Eric Darrigrand 1 ; Hamdi Sakly 1

1 IRMAR, université de Rennes 1, campus de Beaulieu, 35042 Rennes, France
@article{CRMATH_2012__350_3-4_193_0,
     author = {Martin Costabel and Eric Darrigrand and Hamdi Sakly},
     title = {The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {193--197},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.017},
     language = {en},
}
TY  - JOUR
AU  - Martin Costabel
AU  - Eric Darrigrand
AU  - Hamdi Sakly
TI  - The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 193
EP  - 197
VL  - 350
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2012.01.017
LA  - en
ID  - CRMATH_2012__350_3-4_193_0
ER  - 
%0 Journal Article
%A Martin Costabel
%A Eric Darrigrand
%A Hamdi Sakly
%T The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body
%J Comptes Rendus. Mathématique
%D 2012
%P 193-197
%V 350
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2012.01.017
%G en
%F CRMATH_2012__350_3-4_193_0
Martin Costabel; Eric Darrigrand; Hamdi Sakly. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 193-197. doi : 10.1016/j.crma.2012.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.017/

[1] M.M. Botha Solving the volume integral equations of electromagnetic scattering, J. Comput. Phys., Volume 218 (2006) no. 1, pp. 141-158

[2] N.V. Budko; A.B. Samokhin Spectrum of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 28 (2006) no. 2, pp. 682-700

[3] D. Colton; R. Kress Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998

[4] M. Costabel Some historical remarks on the positivity of boundary integral operators, Boundary Element Analysis, Lect. Notes Appl. Comput. Mech., vol. 29, Springer, Berlin, 2007, pp. 1-27

[5] M. Costabel; E. Darrigrand; E.H. Koné Volume and surface integral equations for electromagnetic scattering by a dielectric body, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1817-1825

[6] M.J. Friedman; J.E. Pasciak Spectral properties for the magnetization integral operator, Math. Comp., Volume 43 (1984) no. 168, pp. 447-453

[7] A. Kirsch An integral equation approach and the interior transmission problem for Maxwellʼs equations, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 159-179

[8] A. Kirsch; A. Lechleiter The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in L2, Appl. Anal., Volume 88 (2009) no. 6, pp. 807-830

[9] J.-C. Nédélec Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001

[10] J. Rahola On the eigenvalues of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 21 (2000) no. 5, pp. 1740-1754

  • Ignacio Labarca-Figueroa; Ralf Hiptmair Coupled boundary and volume integral equations for electromagnetic scattering, Journal of Computational and Applied Mathematics, Volume 461 (2025), p. 30 (Id/No 116443) | DOI:10.1016/j.cam.2024.116443 | Zbl:7987986
  • Anne-Sophie Bonnet-Ben Dhia; Lucas Chesnel; Mahran Rihani Maxwell's equations with hypersingularities at a negative index material conical tip, Pure and Applied Analysis, Volume 7 (2025) no. 1, pp. 127-169 | DOI:10.2140/paa.2025.7.127 | Zbl:8014453
  • Ghassen Matoussi; Hamdi Sakly Regularization of the volume integral operator of electromagnetic scattering, Journal of Integral Equations and Applications, Volume 36 (2024) no. 1, pp. 89-109 | DOI:10.1216/jie.2024.36.89 | Zbl:1540.35388
  • H. Sakly; G. Matoussi Volume integral equations for electromagnetic scattering by an orthotropic infinite cylinder, Journal of Mathematical Analysis and Applications, Volume 529 (2024) no. 1, p. 19 (Id/No 127670) | DOI:10.1016/j.jmaa.2023.127670 | Zbl:7739963
  • Habib Ammari; Bowen Li; Hongjie Li; Jun Zou Fano resonances in all-dielectric electromagnetic metasurfaces, Multiscale Modeling Simulation, Volume 22 (2024) no. 1, pp. 476-526 | DOI:10.1137/23m1554825 | Zbl:1537.35047
  • G. Matoussi; H. Sakly The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous obstacle with Lipschitz boundary and regularization, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 1, p. 18 (Id/No 15) | DOI:10.1007/s00033-023-02165-9 | Zbl:1531.35304
  • Clément Henry; Adrien Merlini; Lyes Rahmouni; Francesco P. Andriulli On a Low-Frequency and Contrast-Stabilized Full-Wave Volume Integral Equation Solver for Lossy Media, IEEE Transactions on Antennas and Propagation, Volume 71 (2023) no. 3, p. 2571 | DOI:10.1109/tap.2022.3161390
  • Martin Costabel; Monique Dauge; Khadijeh Nedaiasl Stability analysis of a simple discretization method for a class of strongly singular integral equations, Integral Equations and Operator Theory, Volume 95 (2023) no. 4, p. 36 (Id/No 29) | DOI:10.1007/s00020-023-02750-7 | Zbl:1534.45006
  • Lorenzo Baldassari; Pierre Millien; Alice L. Vanel Super-localisation of a point-like emitter in a resonant environment: correction of the mirage effect, Inverse Problems and Imaging, Volume 17 (2023) no. 2, pp. 490-506 | DOI:10.3934/ipi.2022054 | Zbl:1512.35651
  • Habib Ammari; Bowen Li; Jun Zou Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices, Transactions of the American Mathematical Society, Volume 376 (2023) no. 1, pp. 39-90 | DOI:10.1090/tran/8641 | Zbl:1501.35272
  • Sadeed Bin Sayed; Yang Liu; Luis J. Gomez; Abdulkadir C. Yucel A Butterfly-Accelerated Volume Integral Equation Solver for Broad Permittivity and Large-Scale Electromagnetic Analysis, IEEE Transactions on Antennas and Propagation, Volume 70 (2022) no. 5, p. 3549 | DOI:10.1109/tap.2021.3137193
  • Habib Ammari; Pierre Millien; Alice L. Vanel Modal approximation for strictly convex plasmonic resonators in the time domain: the Maxwell's equations, Journal of Differential Equations, Volume 309 (2022), pp. 676-703 | DOI:10.1016/j.jde.2021.11.024 | Zbl:1483.35242
  • Pengning Chao; Benjamin Strekha; Rodrick Kuate Defo; Sean Molesky; Alejandro W. Rodriguez Physical limits in electromagnetism, Nature Reviews Physics, Volume 4 (2022) no. 8, p. 543 | DOI:10.1038/s42254-022-00468-w
  • Simon N. Chandler-Wilde; Monique Dauge; Euan Spence; Jared Wunsch At the interface between semiclassical analysis and numerical analysis of wave scattering problems. Abstracts from the workshop held September 25 – October 1, 2022, Oberwolfach Rep. 19, No. 3, 2511-2587, 2022 | DOI:10.4171/owr/2022/43 | Zbl:1520.00023
  • S. Molesky; P. Chao; J. Mohajan; W. Reinhart; H. Chi; A. W. Rodriguez T -operator limits on optical communication: Metaoptics, computation, and input-output transformations, Physical Review Research, Volume 4 (2022) no. 1 | DOI:10.1103/physrevresearch.4.013020
  • Habib Ammari; Alexander Dabrowski; Brian Fitzpatrick; Pierre Millien Perturbations of the scattering resonances of an open cavity by small particles. II: The transverse electric polarization case, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2, p. 13 (Id/No 80) | DOI:10.1007/s00033-021-01521-x | Zbl:1464.35163
  • Habib Ammari; Bowen Li; Jun Zou Superresolution in recovering embedded electromagnetic sources in high contrast media, SIAM Journal on Imaging Sciences, Volume 13 (2020) no. 3, pp. 1467-1510 | DOI:10.1137/20m1313908 | Zbl:1455.35297
  • Habib Ammari; Pierre Millien Shape and size dependence of dipolar plasmonic resonance of nanoparticles, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 129 (2019), pp. 242-265 | DOI:10.1016/j.matpur.2018.12.001 | Zbl:1473.35646
  • Maxim A. Yurkin; Michael I. Mishchenko Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium, Physical Review A, Volume 97 (2018) no. 4 | DOI:10.1103/physreva.97.043824
  • Hamdi Sakly Shape derivative of the volume integral operator in electromagnetic scattering by homogeneous bodies, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, pp. 7125-7138 | DOI:10.1002/mma.4517 | Zbl:1387.35568
  • S. C. Brenner; J. Gedicke; L.-Y. Sung Hodge decomposition for two-dimensional time-harmonic Maxwell's equations: impedance boundary condition, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 2, pp. 370-390 | DOI:10.1002/mma.3398 | Zbl:1361.78007
  • Johannes Markkanen Numerical Analysis of the Potential Formulation of the Volume Integral Equation for Electromagnetic Scattering, Radio Science, Volume 52 (2017) no. 10, p. 1301 | DOI:10.1002/2017rs006384
  • Johannes Markkanen; Pasi Yla-Oijala; Seppo Jarvenpaa, 2016 URSI International Symposium on Electromagnetic Theory (EMTS) (2016), p. 834 | DOI:10.1109/ursi-emts.2016.7571533
  • Pasi Yla-Oijala; Johannes Markkanen; Seppo Jarvenpaa Current-Based Volume Integral Equation Formulation for Bianisotropic Materials, IEEE Transactions on Antennas and Propagation, Volume 64 (2016) no. 8, p. 3470 | DOI:10.1109/tap.2016.2570258
  • Marc Bonnet Solvability of a volume integral equation formulation for anisotropic elastodynamic scattering, Journal of Integral Equations and Applications, Volume 28 (2016) no. 2, pp. 169-203 | DOI:10.1216/jie-2016-28-2-169 | Zbl:1383.35226
  • Owen D. Miller; Athanasios G. Polimeridis; M. T. Homer Reid; Chia Wei Hsu; Brendan G. DeLacy; John D. Joannopoulos; Marin Soljačić; Steven G. Johnson Fundamental limits to optical response in absorptive systems, Optics Express, Volume 24 (2016) no. 4, p. 3329 | DOI:10.1364/oe.24.003329
  • Martin Costabel; Eric Darrigrand; Hamdi Sakly Volume integral equations for electromagnetic scattering in two dimensions, Computers Mathematics with Applications, Volume 70 (2015) no. 8, pp. 2087-2101 | DOI:10.1016/j.camwa.2015.08.026 | Zbl:1443.45003
  • M. Costabel On the spectrum of volume integral operators in acoustic scattering, Integral methods in science and engineering. Theoretical and computational advances. Papers based on the presentations at the international conference, IMSE, Karlsruhe, Germany, July 21–25, 2014, Cham: Birkhäuser/Springer, 2015, pp. 119-127 | DOI:10.1007/978-3-319-16727-5_11 | Zbl:1336.65191
  • Armin Lechleiter; Dinh-Liem Nguyen A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Advances in Computational Mathematics, Volume 40 (2014) no. 1, pp. 1-25 | DOI:10.1007/s10444-013-9295-2 | Zbl:1304.78010
  • Anne-Sophie Bonnet-Ben Dhia; Lucas Chesnel; Patrick jun. Ciarlet T-coercivity for the Maxwell problem with sign-changing coefficients, Communications in Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 | DOI:10.1080/03605302.2014.892128 | Zbl:1297.35229
  • Johannes Markkanen Discrete Helmholtz Decomposition for Electric Current Volume Integral Equation Formulation, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 12, p. 6282 | DOI:10.1109/tap.2014.2364614
  • Ryota Misawa; Naoshi Nishimura; Mei Song Tong Preconditioning of Periodic Fast Multipole Method for Solving Volume Integral Equations, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 9, p. 4799 | DOI:10.1109/tap.2014.2327652
  • Johannes Markkanen; Pasi Yla-Oijala Discretization of Electric Current Volume Integral Equation With Piecewise Linear Basis Functions, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 9, p. 4877 | DOI:10.1109/tap.2014.2334705
  • J. Markkanen; P. Yla-Oijala; Seppo Jarvenpaa, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (2013), p. 880 | DOI:10.1109/iceaa.2013.6632364

Cité par 34 documents. Sources : Crossref, zbMATH

Commentaires - Politique