We study the strongly singular volume integral operator that describes the scattering of time-harmonic electromagnetic waves. For the case of piecewise constant material coefficients and smooth interfaces, we determine the essential spectrum. We show that it is a finite set and that the operator is Fredholm of index zero in if and only if the relative permeability and permittivity are both different from 0 and −1.
Nous étudions le spectre essentiel de lʼopérateur intégral volumique fortement singulier décrivant la diffraction dʼondes électromagnétiques. Dans le cas de coefficients constants par morceaux et pour une interface régulière nous démontrons quʼil est fini et que lʼopérateur intégral est Fredholm dʼindice zéro dans si et seulement si les perméabilité et permittivité relatives sont différentes de 0 et de −1.
Accepted:
Published online:
Martin Costabel 1; Eric Darrigrand 1; Hamdi Sakly 1
@article{CRMATH_2012__350_3-4_193_0, author = {Martin Costabel and Eric Darrigrand and Hamdi Sakly}, title = {The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--197}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.017}, language = {en}, }
TY - JOUR AU - Martin Costabel AU - Eric Darrigrand AU - Hamdi Sakly TI - The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body JO - Comptes Rendus. Mathématique PY - 2012 SP - 193 EP - 197 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.017 LA - en ID - CRMATH_2012__350_3-4_193_0 ER -
%0 Journal Article %A Martin Costabel %A Eric Darrigrand %A Hamdi Sakly %T The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body %J Comptes Rendus. Mathématique %D 2012 %P 193-197 %V 350 %N 3-4 %I Elsevier %R 10.1016/j.crma.2012.01.017 %G en %F CRMATH_2012__350_3-4_193_0
Martin Costabel; Eric Darrigrand; Hamdi Sakly. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 193-197. doi : 10.1016/j.crma.2012.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.017/
[1] Solving the volume integral equations of electromagnetic scattering, J. Comput. Phys., Volume 218 (2006) no. 1, pp. 141-158
[2] Spectrum of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 28 (2006) no. 2, pp. 682-700
[3] Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998
[4] Some historical remarks on the positivity of boundary integral operators, Boundary Element Analysis, Lect. Notes Appl. Comput. Mech., vol. 29, Springer, Berlin, 2007, pp. 1-27
[5] Volume and surface integral equations for electromagnetic scattering by a dielectric body, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1817-1825
[6] Spectral properties for the magnetization integral operator, Math. Comp., Volume 43 (1984) no. 168, pp. 447-453
[7] An integral equation approach and the interior transmission problem for Maxwellʼs equations, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 159-179
[8] The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in , Appl. Anal., Volume 88 (2009) no. 6, pp. 807-830
[9] Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001
[10] On the eigenvalues of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 21 (2000) no. 5, pp. 1740-1754
Cited by Sources:
Comments - Policy