[Le spectre essentiel de lʼopérateur intégral volumique en diffraction électromagnétique par un corps homogène]
Nous étudions le spectre essentiel de lʼopérateur intégral volumique fortement singulier décrivant la diffraction dʼondes électromagnétiques. Dans le cas de coefficients constants par morceaux et pour une interface régulière nous démontrons quʼil est fini et que lʼopérateur intégral est Fredholm dʼindice zéro dans
We study the strongly singular volume integral operator that describes the scattering of time-harmonic electromagnetic waves. For the case of piecewise constant material coefficients and smooth interfaces, we determine the essential spectrum. We show that it is a finite set and that the operator is Fredholm of index zero in
Accepté le :
Publié le :
Martin Costabel 1 ; Eric Darrigrand 1 ; Hamdi Sakly 1
@article{CRMATH_2012__350_3-4_193_0, author = {Martin Costabel and Eric Darrigrand and Hamdi Sakly}, title = {The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--197}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.017}, language = {en}, }
TY - JOUR AU - Martin Costabel AU - Eric Darrigrand AU - Hamdi Sakly TI - The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body JO - Comptes Rendus. Mathématique PY - 2012 SP - 193 EP - 197 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.017 LA - en ID - CRMATH_2012__350_3-4_193_0 ER -
%0 Journal Article %A Martin Costabel %A Eric Darrigrand %A Hamdi Sakly %T The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body %J Comptes Rendus. Mathématique %D 2012 %P 193-197 %V 350 %N 3-4 %I Elsevier %R 10.1016/j.crma.2012.01.017 %G en %F CRMATH_2012__350_3-4_193_0
Martin Costabel; Eric Darrigrand; Hamdi Sakly. The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 193-197. doi : 10.1016/j.crma.2012.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.017/
[1] Solving the volume integral equations of electromagnetic scattering, J. Comput. Phys., Volume 218 (2006) no. 1, pp. 141-158
[2] Spectrum of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 28 (2006) no. 2, pp. 682-700
[3] Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998
[4] Some historical remarks on the positivity of boundary integral operators, Boundary Element Analysis, Lect. Notes Appl. Comput. Mech., vol. 29, Springer, Berlin, 2007, pp. 1-27
[5] Volume and surface integral equations for electromagnetic scattering by a dielectric body, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1817-1825
[6] Spectral properties for the magnetization integral operator, Math. Comp., Volume 43 (1984) no. 168, pp. 447-453
[7] An integral equation approach and the interior transmission problem for Maxwellʼs equations, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 159-179
[8] The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in
[9] Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001
[10] On the eigenvalues of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., Volume 21 (2000) no. 5, pp. 1740-1754
- Coupled boundary and volume integral equations for electromagnetic scattering, Journal of Computational and Applied Mathematics, Volume 461 (2025), p. 30 (Id/No 116443) | DOI:10.1016/j.cam.2024.116443 | Zbl:7987986
- Maxwell's equations with hypersingularities at a negative index material conical tip, Pure and Applied Analysis, Volume 7 (2025) no. 1, pp. 127-169 | DOI:10.2140/paa.2025.7.127 | Zbl:8014453
- Regularization of the volume integral operator of electromagnetic scattering, Journal of Integral Equations and Applications, Volume 36 (2024) no. 1, pp. 89-109 | DOI:10.1216/jie.2024.36.89 | Zbl:1540.35388
- Volume integral equations for electromagnetic scattering by an orthotropic infinite cylinder, Journal of Mathematical Analysis and Applications, Volume 529 (2024) no. 1, p. 19 (Id/No 127670) | DOI:10.1016/j.jmaa.2023.127670 | Zbl:7739963
- Fano resonances in all-dielectric electromagnetic metasurfaces, Multiscale Modeling Simulation, Volume 22 (2024) no. 1, pp. 476-526 | DOI:10.1137/23m1554825 | Zbl:1537.35047
- The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous obstacle with Lipschitz boundary and regularization, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 1, p. 18 (Id/No 15) | DOI:10.1007/s00033-023-02165-9 | Zbl:1531.35304
- On a Low-Frequency and Contrast-Stabilized Full-Wave Volume Integral Equation Solver for Lossy Media, IEEE Transactions on Antennas and Propagation, Volume 71 (2023) no. 3, p. 2571 | DOI:10.1109/tap.2022.3161390
- Stability analysis of a simple discretization method for a class of strongly singular integral equations, Integral Equations and Operator Theory, Volume 95 (2023) no. 4, p. 36 (Id/No 29) | DOI:10.1007/s00020-023-02750-7 | Zbl:1534.45006
- Super-localisation of a point-like emitter in a resonant environment: correction of the mirage effect, Inverse Problems and Imaging, Volume 17 (2023) no. 2, pp. 490-506 | DOI:10.3934/ipi.2022054 | Zbl:1512.35651
- Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices, Transactions of the American Mathematical Society, Volume 376 (2023) no. 1, pp. 39-90 | DOI:10.1090/tran/8641 | Zbl:1501.35272
- A Butterfly-Accelerated Volume Integral Equation Solver for Broad Permittivity and Large-Scale Electromagnetic Analysis, IEEE Transactions on Antennas and Propagation, Volume 70 (2022) no. 5, p. 3549 | DOI:10.1109/tap.2021.3137193
- Modal approximation for strictly convex plasmonic resonators in the time domain: the Maxwell's equations, Journal of Differential Equations, Volume 309 (2022), pp. 676-703 | DOI:10.1016/j.jde.2021.11.024 | Zbl:1483.35242
- Physical limits in electromagnetism, Nature Reviews Physics, Volume 4 (2022) no. 8, p. 543 | DOI:10.1038/s42254-022-00468-w
- At the interface between semiclassical analysis and numerical analysis of wave scattering problems. Abstracts from the workshop held September 25 – October 1, 2022, Oberwolfach Rep. 19, No. 3, 2511-2587, 2022 | DOI:10.4171/owr/2022/43 | Zbl:1520.00023
- T -operator limits on optical communication: Metaoptics, computation, and input-output transformations, Physical Review Research, Volume 4 (2022) no. 1 | DOI:10.1103/physrevresearch.4.013020
- Perturbations of the scattering resonances of an open cavity by small particles. II: The transverse electric polarization case, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2, p. 13 (Id/No 80) | DOI:10.1007/s00033-021-01521-x | Zbl:1464.35163
- Superresolution in recovering embedded electromagnetic sources in high contrast media, SIAM Journal on Imaging Sciences, Volume 13 (2020) no. 3, pp. 1467-1510 | DOI:10.1137/20m1313908 | Zbl:1455.35297
- Shape and size dependence of dipolar plasmonic resonance of nanoparticles, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 129 (2019), pp. 242-265 | DOI:10.1016/j.matpur.2018.12.001 | Zbl:1473.35646
- Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium, Physical Review A, Volume 97 (2018) no. 4 | DOI:10.1103/physreva.97.043824
- Shape derivative of the volume integral operator in electromagnetic scattering by homogeneous bodies, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, pp. 7125-7138 | DOI:10.1002/mma.4517 | Zbl:1387.35568
- Hodge decomposition for two-dimensional time-harmonic Maxwell's equations: impedance boundary condition, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 2, pp. 370-390 | DOI:10.1002/mma.3398 | Zbl:1361.78007
- Numerical Analysis of the Potential Formulation of the Volume Integral Equation for Electromagnetic Scattering, Radio Science, Volume 52 (2017) no. 10, p. 1301 | DOI:10.1002/2017rs006384
- , 2016 URSI International Symposium on Electromagnetic Theory (EMTS) (2016), p. 834 | DOI:10.1109/ursi-emts.2016.7571533
- Current-Based Volume Integral Equation Formulation for Bianisotropic Materials, IEEE Transactions on Antennas and Propagation, Volume 64 (2016) no. 8, p. 3470 | DOI:10.1109/tap.2016.2570258
- Solvability of a volume integral equation formulation for anisotropic elastodynamic scattering, Journal of Integral Equations and Applications, Volume 28 (2016) no. 2, pp. 169-203 | DOI:10.1216/jie-2016-28-2-169 | Zbl:1383.35226
- Fundamental limits to optical response in absorptive systems, Optics Express, Volume 24 (2016) no. 4, p. 3329 | DOI:10.1364/oe.24.003329
- Volume integral equations for electromagnetic scattering in two dimensions, Computers Mathematics with Applications, Volume 70 (2015) no. 8, pp. 2087-2101 | DOI:10.1016/j.camwa.2015.08.026 | Zbl:1443.45003
- On the spectrum of volume integral operators in acoustic scattering, Integral methods in science and engineering. Theoretical and computational advances. Papers based on the presentations at the international conference, IMSE, Karlsruhe, Germany, July 21–25, 2014, Cham: Birkhäuser/Springer, 2015, pp. 119-127 | DOI:10.1007/978-3-319-16727-5_11 | Zbl:1336.65191
- A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Advances in Computational Mathematics, Volume 40 (2014) no. 1, pp. 1-25 | DOI:10.1007/s10444-013-9295-2 | Zbl:1304.78010
- T-coercivity for the Maxwell problem with sign-changing coefficients, Communications in Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 | DOI:10.1080/03605302.2014.892128 | Zbl:1297.35229
- Discrete Helmholtz Decomposition for Electric Current Volume Integral Equation Formulation, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 12, p. 6282 | DOI:10.1109/tap.2014.2364614
- Preconditioning of Periodic Fast Multipole Method for Solving Volume Integral Equations, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 9, p. 4799 | DOI:10.1109/tap.2014.2327652
- Discretization of Electric Current Volume Integral Equation With Piecewise Linear Basis Functions, IEEE Transactions on Antennas and Propagation, Volume 62 (2014) no. 9, p. 4877 | DOI:10.1109/tap.2014.2334705
- , 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (2013), p. 880 | DOI:10.1109/iceaa.2013.6632364
Cité par 34 documents. Sources : Crossref, zbMATH
Commentaires - Politique