[Semi-stabilité des fibrés vectoriels invariants sur
Soit G un groupe de Lie connexe sur
Let G be a connected complex Lie group, and let Γ be a cocompact discrete subgroup of G. We prove that any invariant principal bundle on
Accepté le :
Publié le :
Indranil Biswas 1
@article{CRMATH_2012__350_5-6_277_0, author = {Indranil Biswas}, title = {Semistability of invariant bundles over $ G/\Gamma $, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--280}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.011}, language = {en}, }
Indranil Biswas. Semistability of invariant bundles over $ G/\Gamma $, II. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 277-280. doi : 10.1016/j.crma.2012.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.011/
[1] Semistability of invariant bundles over
[2] Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987
[3] Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York–Heidelberg, 1972
- Line bundles and flat connections, Proceedings - Mathematical Sciences, Volume 127 (2017) no. 3, p. 547 | DOI:10.1007/s12044-017-0344-5
- Flat bundles on G/Γ and stability, Archiv der Mathematik, Volume 103 (2014) no. 4, p. 345 | DOI:10.1007/s00013-014-0694-5
- On Hermitian structure onG/Γ, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 6, p. 716 | DOI:10.1016/j.bulsci.2013.03.001
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier