Comptes Rendus
Analytic Geometry
Semistability of invariant bundles over G/Γ, II
Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 277-280.

Let G be a connected complex Lie group, and let Γ be a cocompact discrete subgroup of G. We prove that any invariant principal bundle on G/Γ is semistable with respect to any Hermitian structure on G/Γ given by some right-translation invariant Hermitian structure on G.

Soit G un groupe de Lie connexe sur C, et soit ΓG un sous-groupe discret cocompact. Nous démontrons que tout fibré vectoriel invariant sur G/Γ est semi-stable par rapport à toute structure hermitienne sur G/Γ provenant dʼune structure hermitienne sur G invariante par translations à droite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.02.011

Indranil Biswas 1

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
@article{CRMATH_2012__350_5-6_277_0,
     author = {Indranil Biswas},
     title = {Semistability of invariant bundles over $ G/\Gamma $, {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {277--280},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.02.011},
     language = {en},
}
TY  - JOUR
AU  - Indranil Biswas
TI  - Semistability of invariant bundles over $ G/\Gamma $, II
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 277
EP  - 280
VL  - 350
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2012.02.011
LA  - en
ID  - CRMATH_2012__350_5-6_277_0
ER  - 
%0 Journal Article
%A Indranil Biswas
%T Semistability of invariant bundles over $ G/\Gamma $, II
%J Comptes Rendus. Mathématique
%D 2012
%P 277-280
%V 350
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2012.02.011
%G en
%F CRMATH_2012__350_5-6_277_0
Indranil Biswas. Semistability of invariant bundles over $ G/\Gamma $, II. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 277-280. doi : 10.1016/j.crma.2012.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.011/

[1] I. Biswas Semistability of invariant bundles over G/Γ, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1187-1190

[2] S. Kobayashi Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987

[3] M.S. Raghunathan Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York–Heidelberg, 1972

Cited by Sources:

Comments - Policy