Let G be a connected complex Lie group, and let Γ be a cocompact discrete subgroup of G. We prove that any invariant principal bundle on is semistable with respect to any Hermitian structure on given by some right-translation invariant Hermitian structure on G.
Soit G un groupe de Lie connexe sur , et soit un sous-groupe discret cocompact. Nous démontrons que tout fibré vectoriel invariant sur est semi-stable par rapport à toute structure hermitienne sur provenant dʼune structure hermitienne sur G invariante par translations à droite.
Accepted:
Published online:
Indranil Biswas 1
@article{CRMATH_2012__350_5-6_277_0, author = {Indranil Biswas}, title = {Semistability of invariant bundles over $ G/\Gamma $, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--280}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.011}, language = {en}, }
Indranil Biswas. Semistability of invariant bundles over $ G/\Gamma $, II. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 277-280. doi : 10.1016/j.crma.2012.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.011/
[1] Semistability of invariant bundles over , C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1187-1190
[2] Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987
[3] Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York–Heidelberg, 1972
Cited by Sources:
Comments - Policy