Comptes Rendus
Differential Geometry/Mathematical Physics
On the projective Randers metrics
Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 281-283.

It is proved that a Randers metric F=α+β on a manifold of dimension n3 is projective if and only if the Lie algebra of projective vector fields p(M,F) has (locally) dimension n(n+2). This can be regarded as an analogue of the corresponding result in Riemannian geometry.

On démontre quʼune métrique de Randers F=α+β sur une variété de dimension n3 est projective si et seulement si lʼalgèbre de Lie des champs de vecteurs projectifs p(M,F) est (localement) de dimension n(n+2). Ceci peut être considéré comme un analogue du résultat correspondant en géométrie riemannienne.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.02.010

Mehdi Rafie-Rad 1, 2; Bahman Rezaei 3

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
3 Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran
@article{CRMATH_2012__350_5-6_281_0,
     author = {Mehdi Rafie-Rad and Bahman Rezaei},
     title = {On the projective {Randers} metrics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {281--283},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.02.010},
     language = {en},
}
TY  - JOUR
AU  - Mehdi Rafie-Rad
AU  - Bahman Rezaei
TI  - On the projective Randers metrics
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 281
EP  - 283
VL  - 350
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2012.02.010
LA  - en
ID  - CRMATH_2012__350_5-6_281_0
ER  - 
%0 Journal Article
%A Mehdi Rafie-Rad
%A Bahman Rezaei
%T On the projective Randers metrics
%J Comptes Rendus. Mathématique
%D 2012
%P 281-283
%V 350
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2012.02.010
%G en
%F CRMATH_2012__350_5-6_281_0
Mehdi Rafie-Rad; Bahman Rezaei. On the projective Randers metrics. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 281-283. doi : 10.1016/j.crma.2012.02.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.010/

[1] H. Akbar-Zadeh Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl., Volume 65 (1986), pp. 47-79

[2] D. Bao; Z. Shen Finsler metrics of constant positive curvature on the Lie group S3, J. Lond. Math. Soc., Volume 66 (2002), pp. 453-467

[3] X. Chen; X. Mo; Z. Shen On the flag curvature of Finsler metrics of scalar curvature, J. Lond. Math. Soc., Volume 68 (2003), pp. 762-780

[4] V.S. Matveev Geometric explanation of Beltrami theorem, Int. J. Geom. Methods Mod. Phys., Volume 3 (2006) no. 3, pp. 623-629

[5] V.S. Matveev On the dimension of the group of projective transformations of closed Randers and Riemannian manifolds, SIGMA, Volume 8 (2012), p. 007 (4 pages)

[6] B. Najafi; A. Tayebi A new quantity in Finsler geometry, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 1–2, pp. 81-83

[7] M. Rafie-Rad Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys., Volume 6 (2012) no. 2, pp. 272-278

[8] M. Rafie-Rad Special projective algebra Randers metrics of constant S-curvature, Int. J. Geom. Methods Mod. Phys., Volume 9 (2012) no. 4

[9] M. Rafie-Rad; B. Rezaei On the projective algebra of Randers metrics of constant flag curvature, SIGMA, Volume 7 (2011), p. 085 (12 pages)

[10] G. Randers On an asymmetric metric in the four-space of general relativity, Phys. Rev., Volume 59 (1941), pp. 195-199

[11] Z. Shen Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001

Cited by Sources:

Comments - Policy