It is proved that a Randers metric on a manifold of dimension is projective if and only if the Lie algebra of projective vector fields has (locally) dimension . This can be regarded as an analogue of the corresponding result in Riemannian geometry.
On démontre quʼune métrique de Randers sur une variété de dimension est projective si et seulement si lʼalgèbre de Lie des champs de vecteurs projectifs est (localement) de dimension . Ceci peut être considéré comme un analogue du résultat correspondant en géométrie riemannienne.
Accepted:
Published online:
Mehdi Rafie-Rad 1, 2; Bahman Rezaei 3
@article{CRMATH_2012__350_5-6_281_0, author = {Mehdi Rafie-Rad and Bahman Rezaei}, title = {On the projective {Randers} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {281--283}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.010}, language = {en}, }
Mehdi Rafie-Rad; Bahman Rezaei. On the projective Randers metrics. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 281-283. doi : 10.1016/j.crma.2012.02.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.010/
[1] Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl., Volume 65 (1986), pp. 47-79
[2] Finsler metrics of constant positive curvature on the Lie group , J. Lond. Math. Soc., Volume 66 (2002), pp. 453-467
[3] On the flag curvature of Finsler metrics of scalar curvature, J. Lond. Math. Soc., Volume 68 (2003), pp. 762-780
[4] Geometric explanation of Beltrami theorem, Int. J. Geom. Methods Mod. Phys., Volume 3 (2006) no. 3, pp. 623-629
[5] On the dimension of the group of projective transformations of closed Randers and Riemannian manifolds, SIGMA, Volume 8 (2012), p. 007 (4 pages)
[6] A new quantity in Finsler geometry, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 1–2, pp. 81-83
[7] Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys., Volume 6 (2012) no. 2, pp. 272-278
[8] Special projective algebra Randers metrics of constant S-curvature, Int. J. Geom. Methods Mod. Phys., Volume 9 (2012) no. 4
[9] On the projective algebra of Randers metrics of constant flag curvature, SIGMA, Volume 7 (2011), p. 085 (12 pages)
[10] On an asymmetric metric in the four-space of general relativity, Phys. Rev., Volume 59 (1941), pp. 195-199
[11] Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001
Cited by Sources:
Comments - Policy