[Algorithme de descente à gradients multiples pour lʼoptimisation multiobjectif]
On se place dans le contexte de lʼoptimisation concourante de plusieurs critères
One considers the context of the concurrent optimization of several criteria
Accepté le :
Publié le :
Jean-Antoine Désidéri 1
@article{CRMATH_2012__350_5-6_313_0, author = {Jean-Antoine D\'esid\'eri}, title = {Multiple-gradient descent algorithm {(MGDA)} for multiobjective optimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--318}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.014}, language = {en}, }
Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 313-318. doi : 10.1016/j.crma.2012.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.014/
[1] A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Volume 6 (2002) no. 2, pp. 182-197
[2] J.-A. Désidéri, Multiple-gradient descent algorithm (MGDA), INRIA Research Report No. 6953, June 2009, http://hal.inria.fr/inria-00389811.
[3] Practical Optimization, Academic Press, New York, London, 1986
[4] Nonlinear Multiobjective Optimization, Kluwer Academic Publ., Boston, London, Dordrecht, 1999
[5] A. Zerbinati, J.-A. Désidéri, R. Duvigneau, Comparison between MGDA and PAES for multi-objective optimization, INRIA Research Report No. 7667, June 2011, http://hal.inria.fr/inria-00605423.
Cité par Sources :
Commentaires - Politique