[Algorithme de descente à gradients multiples pour lʼoptimisation multiobjectif]
On se place dans le contexte de lʼoptimisation concourante de plusieurs critères (), fonctions régulières du vecteur de conception (). On donne une solution constructive originale au problème de lʼidentification dʼune direction de descente commune à tous les critères en un point non optimal au sens de Pareto. On est conduit à généraliser la méthode classique du gradient au contexte multiobjectif en utilisant cette direction pour la descente. On prouve que lʼalgorithme converge alors vers un point de conception Pareto-stationnaire.
One considers the context of the concurrent optimization of several criteria (), supposed to be smooth functions of the design vector (). An original constructive solution is given to the problem of identifying a descent direction common to all criteria when the current design-point is not Pareto-optimal. This leads us to generalize the classical steepest-descent method to the multiobjective context by utilizing this direction for the descent. The algorithm is then proved to converge to a Pareto-stationary design-point.
Accepté le :
Publié le :
Jean-Antoine Désidéri 1
@article{CRMATH_2012__350_5-6_313_0, author = {Jean-Antoine D\'esid\'eri}, title = {Multiple-gradient descent algorithm {(MGDA)} for multiobjective optimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--318}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.014}, language = {en}, }
Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 313-318. doi : 10.1016/j.crma.2012.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.014/
[1] A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Volume 6 (2002) no. 2, pp. 182-197
[2] J.-A. Désidéri, Multiple-gradient descent algorithm (MGDA), INRIA Research Report No. 6953, June 2009, http://hal.inria.fr/inria-00389811.
[3] Practical Optimization, Academic Press, New York, London, 1986
[4] Nonlinear Multiobjective Optimization, Kluwer Academic Publ., Boston, London, Dordrecht, 1999
[5] A. Zerbinati, J.-A. Désidéri, R. Duvigneau, Comparison between MGDA and PAES for multi-objective optimization, INRIA Research Report No. 7667, June 2011, http://hal.inria.fr/inria-00605423.
Cité par Sources :
Commentaires - Politique