[Flexibilité asymptotique des varietées globalment hyperboliques]
Dans cette Note, on regarde un problème de collage de deux varietées globalment hyperboliques qui surgit dans le contexte de la construction des états de Hadamard.
In this short Note, a question of patching together globally hyperbolic manifolds is addressed which appeared in the context of the construction of Hadamard states.
Accepté le :
Publié le :
Olaf Müller 1
@article{CRMATH_2012__350_7-8_421_0, author = {Olaf M\"uller}, title = {Asymptotic flexibility of globally hyperbolic manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--423}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.015}, language = {en}, }
Olaf Müller. Asymptotic flexibility of globally hyperbolic manifolds. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2012.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.015/
[1] On smooth Cauchy hypersurfaces and Gerochʼs splitting theorem, Communications in Mathematical Physics, Volume 243 (2003), pp. 461-470
[2] Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Communications in Mathematical Physics, Volume 257 (2005), pp. 43-50
[3] Micro-local approach to the Hadamard condition in quantum field theory on curved space–time, Communications in Mathematical Physics, Volume 179 (1996) no. 3, pp. 529-553
[4] Lorentzian manifolds isometrically embeddable in
[5] Nuclearity, split property, and duality for the Klein–Gordon field in curved spacetime, Letters in Mathematical Physics, Volume 29 (1993), pp. 297-310
Cité par Sources :
Commentaires - Politique