Comptes Rendus
Differential Geometry/Mathematical Physics
Asymptotic flexibility of globally hyperbolic manifolds
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 421-423.

In this short Note, a question of patching together globally hyperbolic manifolds is addressed which appeared in the context of the construction of Hadamard states.

Dans cette Note, on regarde un problème de collage de deux varietées globalment hyperboliques qui surgit dans le contexte de la construction des états de Hadamard.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.03.015

Olaf Müller 1

1 Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
@article{CRMATH_2012__350_7-8_421_0,
     author = {Olaf M\"uller},
     title = {Asymptotic flexibility of globally hyperbolic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--423},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.03.015},
     language = {en},
}
TY  - JOUR
AU  - Olaf Müller
TI  - Asymptotic flexibility of globally hyperbolic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 421
EP  - 423
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.03.015
LA  - en
ID  - CRMATH_2012__350_7-8_421_0
ER  - 
%0 Journal Article
%A Olaf Müller
%T Asymptotic flexibility of globally hyperbolic manifolds
%J Comptes Rendus. Mathématique
%D 2012
%P 421-423
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.03.015
%G en
%F CRMATH_2012__350_7-8_421_0
Olaf Müller. Asymptotic flexibility of globally hyperbolic manifolds. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2012.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.015/

[1] Antonio Bernal; Miguel Sánchez On smooth Cauchy hypersurfaces and Gerochʼs splitting theorem, Communications in Mathematical Physics, Volume 243 (2003), pp. 461-470

[2] Antonio Bernal; Miguel Sánchez Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Communications in Mathematical Physics, Volume 257 (2005), pp. 43-50

[3] M.J. Radzikowski Micro-local approach to the Hadamard condition in quantum field theory on curved space–time, Communications in Mathematical Physics, Volume 179 (1996) no. 3, pp. 529-553

[4] M. Sánchez; O. Müller Lorentzian manifolds isometrically embeddable in Ln, Transactions of the American Mathematical Society, Volume 363 (2011), pp. 5367-5379

[5] R. Verch Nuclearity, split property, and duality for the Klein–Gordon field in curved spacetime, Letters in Mathematical Physics, Volume 29 (1993), pp. 297-310

Cited by Sources:

Comments - Policy