Comptes Rendus
Differential Geometry/Topology
Homotopy of EVII
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 425-426.

We determine explicitly some homotopy groups of the exceptional hermitian symmetric space EVII=E7/(S1E6).

Nous déterminons explicitement quelques groupes dʼhomotopie de lʼespace symétrique hermitien de type exceptionnel EVII=E7/(S1E6).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.04.008

Peter Quast 1

1 Institute of Mathematics, University of Augsburg, Universitätsstrasse 14, 86159 Augsburg, Germany
@article{CRMATH_2012__350_7-8_425_0,
     author = {Peter Quast},
     title = {Homotopy of {EVII}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--426},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.008},
     language = {en},
}
TY  - JOUR
AU  - Peter Quast
TI  - Homotopy of EVII
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 425
EP  - 426
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.008
LA  - en
ID  - CRMATH_2012__350_7-8_425_0
ER  - 
%0 Journal Article
%A Peter Quast
%T Homotopy of EVII
%J Comptes Rendus. Mathématique
%D 2012
%P 425-426
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.008
%G en
%F CRMATH_2012__350_7-8_425_0
Peter Quast. Homotopy of EVII. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 425-426. doi : 10.1016/j.crma.2012.04.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.008/

[1] J. Berndt; S. Console; C. Olmos Submanifolds and Holonomy, CRC Research Notes in Mathematics, vol. 434, Chapman & Hall, Boca Raton, 2003

[2] R. Bott The stable homotopy of the classical groups, Ann. of Math. (2), Volume 70 (1959) no. 2, pp. 313-337

[3] J.M. Burns, Conjugate loci in compact symmetric spaces, Thesis, University of Notre Dame, Notre Dame, Indiana, 1985.

[4] J.M. Burns Homotopy of compact symmetric spaces, Glasg. Math. J., Volume 34 (1992), pp. 221-228

[5] L. Conlon An application of the Bott suspension map to the topology of EIV, Pacific J. Math., Volume 19 (1966) no. 3, pp. 411-428

[6] S. Helgason Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, San Diego, 1978

[7] M. Mimura The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., Volume 6 (1967) no. 2, pp. 131-176

[8] M. Mimura; H. Toda Topology of Lie Groups I and II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, 1991

[9] S.A. Mitchell The Bott Filtration of a Loop Group, Lecture Notes in Mathematics, vol. 1298, Springer, Berlin, 1987 (pp. 215–226)

[10] S.A. Mitchell Quillenʼs theorem on buildings and the loops on a symmetric space, Enseign. Math. (2), Volume 34 (1988), pp. 123-166

[11] T. Nagano The involutions of compact symmetric spaces, Tokyo J. Math., Volume 11 (1988) no. 1, pp. 57-79

[12] P. Quast, Complex structures and chains of symmetric spaces, Habilitationsschrift, Universität Augsburg, 2010.

[13] H. Toda Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, vol. 49, Princeton University Press, Princeton, 1962

Cited by Sources:

Comments - Policy