Dans [1], Alabau-Boussouira et al. (2011) ont étudié la stabilisation exponentielle et polynomiale de système de Bresse sous lʼaction dʼune seule loi de dissipation interne globalement distribuée. Dans cette Note, notre but est dʼétendre les résultats de Alabau-Boussouira et al. (2011) [1], pour prendre en considération le cas important où la loi de dissipation est localement distribuée et pour améliorer le taux de décroissance polynomial de lʼénergie. Nous étudions alors, le taux de décroissance de lʼénergie du système de Bresse sous lʼaction dʼune seule loi de dissipation interne localement distribuée et agissant sur lʼéquation de rotation angulaire. Sous la condition dʼégalité des vitesses de propagation, nous montrons que le système est exponentiellement stable. Dans le cas contraire, nous établissons un nouveau taux de décroissance polynomial de lʼénergie.
In [1], Alabau-Boussouira et al. (2011) studied the exponential and polynomial stability of the Bresse system with one globally distributed dissipation law. In this Note, our goal is to extend the results from Alabau-Boussouira et al. (2011) [1], by taking into consideration the important case when the dissipation law is locally distributed and to improve the polynomial energy decay rate. We then study the energy decay rate of the Bresse system with one locally internal distributed dissipation law acting on the equation about the shear angle displacement. Under the equal speed wave propagation condition, we show that the system is exponentially stable. On the contrary, we establish a new polynomial energy decay rate.
Accepté le :
Publié le :
Nahla Noun 1, 2 ; Ali Wehbe 1
@article{CRMATH_2012__350_9-10_493_0, author = {Nahla Noun and Ali Wehbe}, title = {Stabilisation faible interne locale de syst\`eme \'elastique de {Bresse}}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--498}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.04.003}, language = {fr}, }
Nahla Noun; Ali Wehbe. Stabilisation faible interne locale de système élastique de Bresse. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 493-498. doi : 10.1016/j.crma.2012.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.003/
[1] Stability to weak dissipative Bresse system, J. Math. Anal. Appl., Volume 347 (2011) no. 2, pp. 481-498
[2] Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 765-780
[3] Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010) no. 2, pp. 455-478
[4] Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., Volume 75 (2010) no. 6, pp. 881-904
[5] Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, Volume 1 (1985), pp. 43-56
[6] Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., Volume 16 (1993), pp. 327-358
[7] Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., Volume 56 (2005) no. 4, pp. 630-644
[8] Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., Volume 60 (2009) no. 1, pp. 54-69
[9] On the spectrum of -semigroups, Trans. Amer. Math. Soc., Volume 284 (1984), pp. 847-857
[10] Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedback, J. Math. Phys., Volume 51 (2010) no. 10, pp. 1067-1078
Cité par Sources :
Commentaires - Politique