Comptes Rendus
Analyse mathématique/Équations aux dérivées partielles
Stabilisation frontière indirecte du système de Timoshenko
Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 379-384.

Nous étudions la stabilité frontière indirecte du système de Timoshenko sous lʼaction dʼune seule loi de dissipation. Sous la condition dʼégalité des vitesses de propagation, nous établissons la stabilité exponentielle du système. Dans le cas contraire, nous montrons que le taux de décroissance est polynomial.

In this Note, we study the indirect boundary stabilization of the Timoshenko system with only one dissipation law. Under the equal speed wave propagation condition, we establish the exponential stability of the system. On the contrary, we show that the decay rate is polynomial.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.011

Maya Bassam 1, 2 ; Denis Mercier 1 ; Serge Nicaise 1 ; Ali Wehbe 2

1 Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, institut des sciences et techniques, 59313 Valenciennes cedex 9, France
2 Université Libanaise, faculté des sciences 1 & Hadath, Beyrouth, Liban
@article{CRMATH_2011__349_7-8_379_0,
     author = {Maya Bassam and Denis Mercier and Serge Nicaise and Ali Wehbe},
     title = {Stabilisation fronti\`ere indirecte du syst\`eme de {Timoshenko}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {379--384},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.011},
     language = {fr},
}
TY  - JOUR
AU  - Maya Bassam
AU  - Denis Mercier
AU  - Serge Nicaise
AU  - Ali Wehbe
TI  - Stabilisation frontière indirecte du système de Timoshenko
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 379
EP  - 384
VL  - 349
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.011
LA  - fr
ID  - CRMATH_2011__349_7-8_379_0
ER  - 
%0 Journal Article
%A Maya Bassam
%A Denis Mercier
%A Serge Nicaise
%A Ali Wehbe
%T Stabilisation frontière indirecte du système de Timoshenko
%J Comptes Rendus. Mathématique
%D 2011
%P 379-384
%V 349
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2011.03.011
%G fr
%F CRMATH_2011__349_7-8_379_0
Maya Bassam; Denis Mercier; Serge Nicaise; Ali Wehbe. Stabilisation frontière indirecte du système de Timoshenko. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 379-384. doi : 10.1016/j.crma.2011.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.011/

[1] F. Alabau Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 11, pp. 1015-1020

[2] F. Alabau-Boussouira Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 41 (2002) no. 2, pp. 511-541

[3] F. Ammar-Khodja; S. Kerbal; A. Soufyane Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., Volume 327 (2007), pp. 525-538

[4] C.J.K. Batty; T. Duyckaerts Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 765-780

[5] C. Benchimol A note on weak stabilization of contraction semi-groups, SIAM J. Control Optim., Volume 16 (1978), pp. 373-379

[6] A. Borichev; Y. Tomilov Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010) no. 2, pp. 455-478

[7] F.L. Huang Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. of Diff. Eqs., Volume 1 (1985), pp. 43-56

[8] J.U. Kim; Y. Renardy Boundary control of the Timoshenko beam, SIAM J. Control Optim., Volume 25 (1987) no. 6, pp. 1417-1429

[9] Z. Liu; B. Rao Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., Volume 56 (2005) no. 4, pp. 630-644

[10] J. Prüss On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., Volume 284 (1984), pp. 847-857

[11] D.L. Russell A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., Volume 173 (1993) no. 2, pp. 339-358

[12] A. Soufyane; A. Wehbe Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equation, Volume 2003 (2003), pp. 1-14

  • Ayechi Radhia; Khenissi Moez Local indirect stabilization of same coupled evolution systems through resolvent estimates, Discrete and Continuous Dynamical Systems - S, Volume 15 (2022) no. 6, p. 1573 | DOI:10.3934/dcdss.2022099
  • Anderson J. A. Ramos; Manoel J. Dos Santos; Mirelson M. Freitas; Dilberto S. Almeida Júnior Existence of Attractors for a Nonlinear Timoshenko System with Delay, Journal of Dynamics and Differential Equations, Volume 32 (2020) no. 4, p. 1997 | DOI:10.1007/s10884-019-09799-2
  • M.S. Alves; R.N. Monteiro Exponential stability of laminated Timoshenko beams with boundary/internal controls, Journal of Mathematical Analysis and Applications, Volume 482 (2020) no. 1, p. 123516 | DOI:10.1016/j.jmaa.2019.123516
  • Sergio Rifo; Octavio Vera Villagran; Jaime E. Muñoz Rivera The lack of exponential stability of the hybrid Bresse system, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, p. 1 | DOI:10.1016/j.jmaa.2015.11.041
  • Jaime E. Muñoz Rivera; Andrés I. Ávila Rates of decay to non homogeneous Timoshenko model with tip body, Journal of Differential Equations, Volume 258 (2015) no. 10, p. 3468 | DOI:10.1016/j.jde.2015.01.011
  • Maya Bassam; Denis Mercier; Serge Nicaise; Ali Wehbe Polynomial stability of the Timoshenko system by one boundary damping, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, p. 1177 | DOI:10.1016/j.jmaa.2014.12.055
  • D.S. Almeida Júnior; M.L. Santos; J.E. Muñoz Rivera Stability to weakly dissipative Timoshenko systems, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 14, p. 1965 | DOI:10.1002/mma.2741

Cité par 7 documents. Sources : Crossref

Commentaires - Politique