Comptes Rendus
Équations aux dérivées partielles
Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 371-374.

Nous donnons une preuve alternative, basée sur lʼéquation de Monge–Ampère du résultat de Dacorogna et Moser (1990) [4] sur la résolution avec la régularité optimale du problème de Dirichlet pour lʼéquation du Jacobien prescrit.

We give an alternative proof, based on the Monge–Ampère equation, of Dacorogna and Moserʼs result (Dacorogna and Moser, 1990) [4] on the solvability with optimal regularity of the Dirichlet problem for the prescribed Jacobian equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.04.005

Guillaume Carlier 1 ; Bernard Dacorogna 2

1 Université Paris Dauphine, CEREMADE, place de Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 Section de mathématiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Suisse, Switzerland
@article{CRMATH_2012__350_7-8_371_0,
     author = {Guillaume Carlier and Bernard Dacorogna},
     title = {R\'esolution du probl\`eme de {Dirichlet} pour l'\'equation du {Jacobien} prescrit via l'\'equation de {Monge{\textendash}Amp\`ere}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--374},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.005},
     language = {fr},
}
TY  - JOUR
AU  - Guillaume Carlier
AU  - Bernard Dacorogna
TI  - Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 371
EP  - 374
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.005
LA  - fr
ID  - CRMATH_2012__350_7-8_371_0
ER  - 
%0 Journal Article
%A Guillaume Carlier
%A Bernard Dacorogna
%T Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère
%J Comptes Rendus. Mathématique
%D 2012
%P 371-374
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.005
%G fr
%F CRMATH_2012__350_7-8_371_0
Guillaume Carlier; Bernard Dacorogna. Résolution du problème de Dirichlet pour lʼéquation du Jacobien prescrit via lʼéquation de Monge–Ampère. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 371-374. doi : 10.1016/j.crma.2012.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.005/

[1] Y. Brenier Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, Volume 44 (1991), pp. 375-417

[2] L. Caffarelli Boundary regularity of maps with convex potentials II, Ann. of Math., Volume 144 (1996), pp. 453-496

[3] G. Csato; B. Dacorogna; O. Kneuss The Pullback Equation for Differential Forms, PNLDE Series, vol. 83, Birkhaüser, New York, 2012

[4] B. Dacorogna; J. Moser On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990), pp. 1-26

[5] W. Gangbo; R.J. McCann Shape recognition via Wasserstein distance, Quart. Appl. Math., Volume 58 (2000), pp. 705-737

[6] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977

[7] G. Loeper On the regularity of the polar factorization for time dependent maps, Calc. Var. Partial Differential Equations, Volume 22 (2005), pp. 343-374

[8] J. Milnor On manifolds homeomorphic to the 7-sphere, Ann. of Math., Volume 64 (1956), pp. 399-405

[9] J. Urbas On the second boundary value problem for equations of Monge–Ampère type, J. Reine Angew. Math., Volume 487 (1997), pp. 115-124

  • André Guerra; Lukas Koch; Sauli Lindberg Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs, Advances in Mathematics, Volume 415 (2023), p. 39 (Id/No 108869) | DOI:10.1016/j.aim.2023.108869 | Zbl:1540.47086
  • Alexandre Caboussat; Roland Glowinski; Dimitrios Gourzoulidis A least-squares method for the solution of the non-smooth prescribed Jacobian equation, Journal of Scientific Computing, Volume 93 (2022) no. 1, p. 32 (Id/No 15) | DOI:10.1007/s10915-022-01968-8 | Zbl:1497.65222
  • André Guerra; Lukas Koch; Sauli Lindberg The Dirichlet problem for the Jacobian equation in critical and supercritical Sobolev spaces, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 1, p. 15 (Id/No 55) | DOI:10.1007/s00526-021-01931-9 | Zbl:1460.35074
  • Julian Fischer; Olivier Kneuss Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with Lp data and applications to nonlinear elasticity, Journal of Differential Equations, Volume 266 (2019) no. 1, pp. 257-311 | DOI:10.1016/j.jde.2018.07.045 | Zbl:1406.35493
  • Alexandre Caboussat; Roland Glowinski An alternating direction method of multipliers for the numerical solution of a fully nonlinear partial differential equation involving the Jacobian determinant, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. a52-a80 | DOI:10.1137/16m1094075 | Zbl:1380.65363
  • Bernard Dacorogna The pullback equation, Vector-valued partial differential equations and applications. Cetraro, Italy, July 8–12, 2013, Cham: Springer; Florence: Fondazione CIME, 2017, pp. 1-72 | DOI:10.1007/978-3-319-54514-1_1 | Zbl:1382.35078
  • Guillaume Carlier; Bernard Dacorogna Solution of the Dirichlet problem for the prescribed Jacobian equation by the Monge-Ampère equation, Actes du colloque “EDP-Normandie”, Le Havre, France, Octobre 23–24, 2012, [s.l.]: Fédération Normandie-Mathématiques, 2013, pp. 25-33 | Zbl:1311.35129

Cité par 7 documents. Sources : zbMATH

Commentaires - Politique