In this Note, we give a new proof of a pointwise asymptotic expansion in powers of h of the derivative of the spectral shift function corresponding to the pair , near a non-trapping energy. Here the potential V is smooth, real-valued and for some , and is a small parameter. This result is originally due to D. Robert and H. Tamura and their proof is based on the construction of a long-time parametrix for the time-dependent Schrödinger equation. Here we give a time-independent method.
Dans cette Note, on donne une nouvelle preuve pour lʼasymptotique forte en puissances de h de la dérivée de la fonction de décalage spectral associée au couple , près dʼune énergie non captive. Ici le potentiel V est lisse, à valeurs réelles et pour un certain , et est un petit paramètre. Ce résultat est due à D. Robert et H. Tamura et leur preuve est basée sur la construction de paramétix pour des temps grands pour lʼéquation de Schrödinger dépendant du temps. Ici on donne une méthode indépendante du temps.
Accepted:
Published online:
Mouez Dimassi 1; Maher Zerzeri 2
@article{CRMATH_2012__350_7-8_375_0, author = {Mouez Dimassi and Maher Zerzeri}, title = {A time-independent approach for the study of spectral shift function}, journal = {Comptes Rendus. Math\'ematique}, pages = {375--378}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.016}, language = {en}, }
Mouez Dimassi; Maher Zerzeri. A time-independent approach for the study of spectral shift function. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 375-378. doi : 10.1016/j.crma.2012.03.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.016/
[1] M. Dimassi, S. Fujiié, Spectral shift function and resonances in the non-trapping case for Stark Hamiltonian, preprint.
[2] Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999
[3] M. Dimassi, M. Zerzeri, A time-independent approach for the study of spectral shift function and applications, in preparation.
[4] A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal., Volume 254 (2008) no. 11, pp. 2707-2724
[5] Principe dʼabsorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988) no. 3, pp. 121-123
[6] Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré, Volume 3 (2002) no. 4, pp. 739-756
[7] Semiclassical asymptotics for the spectral shift function, Amer. Math. Soc. Transl., Volume 189 (1999) no. 2, pp. 187-203
[8] Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 124-147
[9] Fractal upper bounds on the density of semiclassical resonances, Duke Math. J., Volume 137 (2007) no. 3, pp. 381-459
Cited by Sources:
Comments - Policy