[Fonctions lipschitziennes d'opérateurs perturbés]
Nous démontrons que si f est une fonction lipschitzienne, A et B des opérateurs autoadjoints tels que , alors , c'est-à-dire . Si est dans la classe des opérateurs à trace, nous montrons que , c'est-à-dire . Plus généralement, pour une fonction lipschitzienne f et pour des mesures spectrales et , considérons l'intégrale double opératorielle . Nous montrons que si , alors et si , alors . Finalement, si T appartient à l'idéal de Matsaev , alors Q est un opérateur compact.
We prove that if f is a Lipschitz function on , and A and B are self-adjoint operators such that , then belongs to the weak space , i.e., . We deduce from this result that if belongs to the trace class and f is Lipschitz, then , i.e., . We also obtain more general results about the behavior of double operator integrals of the form , where and are spectral measures. We show that if , then and if , then . Finally, if T belongs to the Matsaev ideal , then Q is a compact operator.
Accepté le :
Publié le :
Fedor Nazarov 1 ; Vladimir Peller 2
@article{CRMATH_2009__347_15-16_857_0, author = {Fedor Nazarov and Vladimir Peller}, title = {Lipschitz functions of perturbed operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {857--862}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.003}, language = {en}, }
Fedor Nazarov; Vladimir Peller. Lipschitz functions of perturbed operators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 857-862. doi : 10.1016/j.crma.2009.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.003/
[1] Functions of perturbed operators, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 483-488
[2] Double Stieltjes operator integrals, Problems of Math. Phys., Leningrad. Univ., Volume 1 (1966), pp. 33-67 (in Russian). English transl.: Topics Math. Physics, 1, 1967, pp. 25-54 Consultants Bureau Plenum Publishing Corporation, New York
[3] Double Stieltjes operator integrals. II, Problems of Math. Phys., Leningrad. Univ., Volume 2 (1967), pp. 26-60 (in Russian). English transl.: Topics Math. Physics, 2, 1968, pp. 19-46 Consultants Bureau Plenum Publishing Corporation, New York
[4] Double Stieltjes operator integrals. III, Problems of Math. Phys., Leningrad. Univ., Volume 6 (1973), pp. 27-53 (in Russian)
[5] An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 30 (1972), pp. 146-153 (in Russian)
[6] Metric properties of the averaging projection onto the set of Hankel matrices, Dokl. Akad. Nauk SSSR, Volume 278 (1984), pp. 271-285 (English transl. in: Soviet Math. Dokl., 30, 1984, pp. 362-368)
[7] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123
[8] Hankel Operators and their Applications, Springer-Verlag, New York, 2003
Cité par Sources :
Commentaires - Politique