[Existence de solutions fortes globales pour le système de Navier–Stokes compressible avec des données initiales grandes sur la partie rotationnelle de la vitesse]
Nous montrons lʼexistence de solutions fortes globales pour le système de Navier–Stokes compressible en dimension avec des données initiales grandes sur la partie rotationnelle de la vitesse. Suivant Chemin et Gallagher (2009, 2011) [3,4], nous cherchons a exhiber des données initiales telles que la projection sur les champs de vecteurs à divergence nulle soient grandes dans (qui est le plus large espace invariant par le scaling des équations) et telle que ces données initiales génèrent des solutions fortes globales. Le fait que lʼhypothèse de petitesse dans Chemin et Gallagher (2009) [3] a lieu sur le terme non linéaire de convection nous permet de décomposer la solution des équations de Navier–Stokes compressible comme la somme dʼune vitesse incompressible et dʼune vitesse purement compressible. Combinant la notion de quasi-solution introduite dans Haspot [8,9,7], nous obtenons lʼexistence de solutions fortes globales avec des données initiales à la fois grande pour la partie irrationnelle et la partie rotationnelle.
We show the existence of global strong solutions for the compressible Navier–Stokes system in dimension with large initial data on the rotational part of the velocity. By following Chemin and Gallagher (2009, 2011) [3,4], we aim at exhibiting large initial data such that the projection on the divergence field is large in (which is the largest space invariant by the scaling of the equations) and such that these initial data generate global strong solution. The fact that the smallness hypothesis in Chemin and Gallagher (2009) [3] holds on the nonlinear term of convection enables us to split the solution of the compressible Navier–Stokes equations in the sum of an incompressible solution and of a purely compressible solution. Combining the notion of quasi-solution introduced in Haspot [8,9,7], we obtain the existence of global strong solution for the shallow water system for large initial velocity both on the irrotational and rotational part.
Accepté le :
Publié le :
Boris Haspot 1
@article{CRMATH_2012__350_9-10_487_0, author = {Boris Haspot}, title = {Existence of global strong solutions for the barotropic {Navier{\textendash}Stokes} system with large initial data on the rotational part of the velocity}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--492}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.04.017}, language = {en}, }
TY - JOUR AU - Boris Haspot TI - Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity JO - Comptes Rendus. Mathématique PY - 2012 SP - 487 EP - 492 VL - 350 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2012.04.017 LA - en ID - CRMATH_2012__350_9-10_487_0 ER -
%0 Journal Article %A Boris Haspot %T Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity %J Comptes Rendus. Mathématique %D 2012 %P 487-492 %V 350 %N 9-10 %I Elsevier %R 10.1016/j.crma.2012.04.017 %G en %F CRMATH_2012__350_9-10_487_0
Boris Haspot. Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 487-492. doi : 10.1016/j.crma.2012.04.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.017/
[1] A global existence result for the compressible Navier–Stokes equations in the critical framework, Archive for Rational Mechanics and Analysis, Volume 198 (2010) no. 1, pp. 233-271
[2] F. Charve, B. Haspot, Existence of strong solutions in larger space for the shallow-water system, Advances in Differential Equations, submitted for publication.
[3] Wellposedness and stability results for the Navier–Stokes equations in , Annales de lʼInstitut H. Poincaré, Analyse non Linéaire, Volume 26 (2009) no. 2, pp. 599-624
[4] Global regularity for some classes of large solutions to the Navier–Stokes equations, Annals of Mathematics, Volume 173 (2011) no. 2, pp. 983-1012
[5] Existence of global strong solutions in critical spaces for barotropic viscous fuids, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 2, pp. 427-460
[6] Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces, Journal of Differential Equations, Volume 251 (2011) no. 8, pp. 2262-2295
[7] Existence of strong global solutions for the shallow-water equations with large initial data (preprint) | arXiv
[8] Existance of global strong solutions for the Saint-Venant system with large initial data on the irrotational part of the velocity, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 5–6, pp. 249-254
[9] Global existence of strong solution for shallow water system with large initial data on the irrotational part (preprint) | arXiv
Cité par Sources :
Commentaires - Politique