Comptes Rendus
Numerical Analysis
Accurate a posteriori error evaluation in the reduced basis method
[Évaluation précise de lʼestimateur a posteriori dans la méthode des bases réduites]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 539-542.

In the reduced basis method, the evaluation of the a posteriori estimator can become very sensitive to round-off errors. In this Note, the origin of the loss of accuracy is revealed, and a solution to this problem is proposed and illustrated on a simple example.

Dans la méthode des bases réduites, lʼévaluation de lʼestimateur a posteriori peut sʼavérer particulièrement sensible aux erreurs dʼarrondis machine. Dans cette Note, lʼorigine de la perte de précision est révélée et une solution à ce problème est proposée et illustrée sur un exemple simple.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.05.012

Fabien Casenave 1

1 Université Paris-Est, CERMICS, École des Ponts ParisTech, 6 & 8, avenue Blaise-Pascal, 77455 Marne-la-Vallée cedex 2, France
@article{CRMATH_2012__350_9-10_539_0,
     author = {Fabien Casenave},
     title = {Accurate a posteriori error evaluation in the reduced basis method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--542},
     publisher = {Elsevier},
     volume = {350},
     number = {9-10},
     year = {2012},
     doi = {10.1016/j.crma.2012.05.012},
     language = {en},
}
TY  - JOUR
AU  - Fabien Casenave
TI  - Accurate a posteriori error evaluation in the reduced basis method
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 539
EP  - 542
VL  - 350
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2012.05.012
LA  - en
ID  - CRMATH_2012__350_9-10_539_0
ER  - 
%0 Journal Article
%A Fabien Casenave
%T Accurate a posteriori error evaluation in the reduced basis method
%J Comptes Rendus. Mathématique
%D 2012
%P 539-542
%V 350
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2012.05.012
%G en
%F CRMATH_2012__350_9-10_539_0
Fabien Casenave. Accurate a posteriori error evaluation in the reduced basis method. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 539-542. doi : 10.1016/j.crma.2012.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.012/

[1] C. Canuto; T. Tonn; K. Urban A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs, SIAM J. Numer. Anal., Volume 47 (2009), pp. 2001-2022

[2] L. Machiels; Y. Maday; I.B. Oliveira; A.T. Patera; D.V. Rovas Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 2, pp. 153-158

  • David Ryckelynck; Fabien Casenave; Nissrine Akkari Error Estimation, Manifold Learning (2024), p. 39 | DOI:10.1007/978-3-031-52764-7_3
  • P. Edel; Y. Maday Dual natural-norm a posteriori error estimators for reduced basis approximations to parametrized linear equations, M3AS. Mathematical Models Methods in Applied Sciences, Volume 33 (2023) no. 6, pp. 1215-1244 | DOI:10.1142/s0218202523500288 | Zbl:7716181
  • Huy Dinh; Harbir Antil; Yanlai Chen; Elena Cherkaev; Akil Narayan Model reduction for fractional elliptic problems using Kato's formula, Mathematical Control and Related Fields, Volume 12 (2022) no. 1, pp. 115-146 | DOI:10.3934/mcrf.2021004 | Zbl:1486.35421
  • Marta Čertíková; Liya Gaynutdinova; Ivana Pultarová Multilevel a posteriori error estimator for greedy reduced basis algorithms, SN Applied Sciences, Volume 2 (2020) no. 4 | DOI:10.1007/s42452-020-2409-9
  • Yanlai Chen; Jiahua Jiang; Akil Narayan A robust error estimator and a residual-free error indicator for reduced basis methods, Computers Mathematics with Applications, Volume 77 (2019) no. 7, pp. 1963-1979 | DOI:10.1016/j.camwa.2018.11.032 | Zbl:1442.65351
  • Fabien Casenave; Nissrine Akkari An Error Indicator-Based Adaptive Reduced Order Model for Nonlinear Structural Mechanics—Application to High-Pressure Turbine Blades, Mathematical and Computational Applications, Volume 24 (2019) no. 2, p. 41 | DOI:10.3390/mca24020041
  • S. Brandl; R. Dyczij-Edlinger Parametric Model-Order Reduction for Accelerating the Gradient-Based Optimization of Microwave Structures Using Finite-Elements, IFAC-PapersOnLine, Volume 51 (2018) no. 2, p. 190 | DOI:10.1016/j.ifacol.2018.03.033
  • Rolf Baltes; Alwin Schultschik; Ortwin Farle; Romanus Dyczij-Edlinger A Finite-Element-Based Fast Frequency Sweep Framework Including Excitation by Frequency-Dependent Waveguide Mode Patterns, IEEE Transactions on Microwave Theory and Techniques, Volume 65 (2017) no. 7, p. 2249 | DOI:10.1109/tmtt.2017.2679181
  • Assyr Abdulle; Ondrej Budáč A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media, Computer Methods in Applied Mechanics and Engineering, Volume 307 (2016), pp. 1-31 | DOI:10.1016/j.cma.2016.03.016 | Zbl:1436.76018
  • Alexander Sommer; Ortwin Farle; Romanus Dyczij-Edlinger A New Method for Accurate and Efficient Residual Computation in Adaptive Model-Order Reduction, IEEE Transactions on Magnetics, Volume 51 (2015) no. 3, p. 1 | DOI:10.1109/tmag.2014.2352812
  • Fabien Casenave; Alexandre Ern; Tony Lelièvre Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 48 (2014) no. 1, pp. 207-229 | DOI:10.1051/m2an/2013097 | Zbl:1288.65157
  • Masayuki Yano A Space-Time Petrov–Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 1, p. A232 | DOI:10.1137/120903300
  • Harbir Antil; Scott E. Field; Frank Herrmann; Ricardo H. Nochetto; Manuel Tiglio Two-step greedy algorithm for reduced order quadratures, Journal of Scientific Computing, Volume 57 (2013) no. 3, pp. 604-637 | DOI:10.1007/s10915-013-9722-z | Zbl:1292.65024

Cité par 13 documents. Sources : Crossref, zbMATH

Commentaires - Politique