Comptes Rendus
Numerical Analysis
Accurate a posteriori error evaluation in the reduced basis method
Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 539-542.

In the reduced basis method, the evaluation of the a posteriori estimator can become very sensitive to round-off errors. In this Note, the origin of the loss of accuracy is revealed, and a solution to this problem is proposed and illustrated on a simple example.

Dans la méthode des bases réduites, lʼévaluation de lʼestimateur a posteriori peut sʼavérer particulièrement sensible aux erreurs dʼarrondis machine. Dans cette Note, lʼorigine de la perte de précision est révélée et une solution à ce problème est proposée et illustrée sur un exemple simple.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.05.012

Fabien Casenave 1

1 Université Paris-Est, CERMICS, École des Ponts ParisTech, 6 & 8, avenue Blaise-Pascal, 77455 Marne-la-Vallée cedex 2, France
@article{CRMATH_2012__350_9-10_539_0,
     author = {Fabien Casenave},
     title = {Accurate a posteriori error evaluation in the reduced basis method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--542},
     publisher = {Elsevier},
     volume = {350},
     number = {9-10},
     year = {2012},
     doi = {10.1016/j.crma.2012.05.012},
     language = {en},
}
TY  - JOUR
AU  - Fabien Casenave
TI  - Accurate a posteriori error evaluation in the reduced basis method
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 539
EP  - 542
VL  - 350
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2012.05.012
LA  - en
ID  - CRMATH_2012__350_9-10_539_0
ER  - 
%0 Journal Article
%A Fabien Casenave
%T Accurate a posteriori error evaluation in the reduced basis method
%J Comptes Rendus. Mathématique
%D 2012
%P 539-542
%V 350
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2012.05.012
%G en
%F CRMATH_2012__350_9-10_539_0
Fabien Casenave. Accurate a posteriori error evaluation in the reduced basis method. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 539-542. doi : 10.1016/j.crma.2012.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.012/

[1] C. Canuto; T. Tonn; K. Urban A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs, SIAM J. Numer. Anal., Volume 47 (2009), pp. 2001-2022

[2] L. Machiels; Y. Maday; I.B. Oliveira; A.T. Patera; D.V. Rovas Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 2, pp. 153-158

Cited by Sources:

Comments - Policy