In this Note, we make explicit the limit law of the renormalized supercritical branching random walk, giving credit to a conjecture formulated in Barral et al. (2012) [5] for a continuous analogue of the branching random walk. Also, in the case of a branching random walk on a homogeneous tree, we express the law of the corresponding limiting renormalized Gibbs measures, confirming, in this discrete model, conjectures formulated by physicists (Derrida and Spohn, 1988 [9]) about the Poisson–Dirichlet nature of the jumps in the limit, and precising the conjecture by giving the spatial distribution of these jumps.
Cette Note explicite la loi limite dʼun processus de branchement supercritique renormalisé, confortant ainsi une conjecture formulée dans Barral et al. (2012) [5] pour un analogue continu de cette marche. Dans le cas dʼune marche aléatoire de branchement sur un arbre homogène, nous donnons la loi limite de la mesure de Gibbs renormalisée associée, confirmant pour ce modèle discret des conjectures formulées par des physiciens (Derrida et Spohn, 1988 [9]) à propos de la nature Poisson–Dirichlet des sauts observés à la limite, tout en donnant la distribution spatiale de ces sauts.
Accepted:
Published online:
Julien Barral 1; Rémi Rhodes 2; Vincent Vargas 2
@article{CRMATH_2012__350_9-10_535_0, author = {Julien Barral and R\'emi Rhodes and Vincent Vargas}, title = {Limiting laws of supercritical branching random walks}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--538}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.013}, language = {en}, }
Julien Barral; Rémi Rhodes; Vincent Vargas. Limiting laws of supercritical branching random walks. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 535-538. doi : 10.1016/j.crma.2012.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.013/
[1] Convergence of the minimum of a branching random walk | arXiv
[2] The Seneta–Heyde scaling for the branching random walk | arXiv
[3] R. Allez, R. Rhodes, V. Vargas, Lognormal scale invariant random measures, Probab. Theory Related Fields, in press.
[4] Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoretic. Probab., Volume 13 (2000), pp. 1027-1060
[5] Gaussian multiplicative chaos and KPZ duality | arXiv
[6] Seneta–Heyde norming in the branching random walk, Ann. Probab., Volume 25 (1997), pp. 337-360
[7] Measure change in multitype branching, Adv. in Appl. Probab., Volume 36 (2004) no. 2, pp. 544-581
[8] Glass transition for a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and Sinh-Gordon models, Phys. Rev. E, Volume 63 (2001), p. 026110
[9] Polymers on disordered trees, spin glasses, and traveling waves, Journal of Statistical Physics, Volume 51 (1988) no. 5, pp. 817-840
[10] Fixed points of the smoothing transformation, Probab. Theory Related Fields, Volume 64 (1983) no. 3, pp. 275-301
[11] Sur le chaos multiplicatif, Ann. Sci. Math. Québec, Volume 9 (1985) no. 2, pp. 105-150
[12] Sur certaines martingales de Benoit Mandelbrot, Adv. Math., Volume 22 (1976) no. 2, pp. 131-145
[13] Fixed points of a generalized smoothing transformation and applications to the branching random walk, Adv. in Appl. Probab., Volume 30 (1998), pp. 85-112
[14] Convergence in law for the branching random walk seen from its tip | arXiv
[15] Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, II, C. R. Acad. Sci. Paris, Volume 278A (1974), pp. 289-292
[16] ⋆-scale invariant random measures | arXiv
[17] Exact asymptotics of the freezing transition of a logarithmically correlated random energy model, J. Stat. Phys., Volume 145 (2011), pp. 1595-1619
Cited by Sources:
Comments - Politique