[Lois limites de marches aléatoires de branchement supercritiques]
Cette Note explicite la loi limite dʼun processus de branchement supercritique renormalisé, confortant ainsi une conjecture formulée dans Barral et al. (2012) [5] pour un analogue continu de cette marche. Dans le cas dʼune marche aléatoire de branchement sur un arbre homogène, nous donnons la loi limite de la mesure de Gibbs renormalisée associée, confirmant pour ce modèle discret des conjectures formulées par des physiciens (Derrida et Spohn, 1988 [9]) à propos de la nature Poisson–Dirichlet des sauts observés à la limite, tout en donnant la distribution spatiale de ces sauts.
In this Note, we make explicit the limit law of the renormalized supercritical branching random walk, giving credit to a conjecture formulated in Barral et al. (2012) [5] for a continuous analogue of the branching random walk. Also, in the case of a branching random walk on a homogeneous tree, we express the law of the corresponding limiting renormalized Gibbs measures, confirming, in this discrete model, conjectures formulated by physicists (Derrida and Spohn, 1988 [9]) about the Poisson–Dirichlet nature of the jumps in the limit, and precising the conjecture by giving the spatial distribution of these jumps.
Accepté le :
Publié le :
Julien Barral 1 ; Rémi Rhodes 2 ; Vincent Vargas 2
@article{CRMATH_2012__350_9-10_535_0, author = {Julien Barral and R\'emi Rhodes and Vincent Vargas}, title = {Limiting laws of supercritical branching random walks}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--538}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.013}, language = {en}, }
Julien Barral; Rémi Rhodes; Vincent Vargas. Limiting laws of supercritical branching random walks. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 535-538. doi : 10.1016/j.crma.2012.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.013/
[1] Convergence of the minimum of a branching random walk | arXiv
[2] The Seneta–Heyde scaling for the branching random walk | arXiv
[3] R. Allez, R. Rhodes, V. Vargas, Lognormal scale invariant random measures, Probab. Theory Related Fields, in press.
[4] Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoretic. Probab., Volume 13 (2000), pp. 1027-1060
[5] Gaussian multiplicative chaos and KPZ duality | arXiv
[6] Seneta–Heyde norming in the branching random walk, Ann. Probab., Volume 25 (1997), pp. 337-360
[7] Measure change in multitype branching, Adv. in Appl. Probab., Volume 36 (2004) no. 2, pp. 544-581
[8] Glass transition for a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and Sinh-Gordon models, Phys. Rev. E, Volume 63 (2001), p. 026110
[9] Polymers on disordered trees, spin glasses, and traveling waves, Journal of Statistical Physics, Volume 51 (1988) no. 5, pp. 817-840
[10] Fixed points of the smoothing transformation, Probab. Theory Related Fields, Volume 64 (1983) no. 3, pp. 275-301
[11] Sur le chaos multiplicatif, Ann. Sci. Math. Québec, Volume 9 (1985) no. 2, pp. 105-150
[12] Sur certaines martingales de Benoit Mandelbrot, Adv. Math., Volume 22 (1976) no. 2, pp. 131-145
[13] Fixed points of a generalized smoothing transformation and applications to the branching random walk, Adv. in Appl. Probab., Volume 30 (1998), pp. 85-112
[14] Convergence in law for the branching random walk seen from its tip | arXiv
[15] Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, II, C. R. Acad. Sci. Paris, Volume 278A (1974), pp. 289-292
[16] ⋆-scale invariant random measures | arXiv
[17] Exact asymptotics of the freezing transition of a logarithmically correlated random energy model, J. Stat. Phys., Volume 145 (2011), pp. 1595-1619
- Universality of Poisson–Dirichlet Law for Log-Correlated Gaussian Fields via Level Set Statistics, Communications in Mathematical Physics, Volume 406 (2025) no. 4 | DOI:10.1007/s00220-025-05270-0
- Right-Most Position of a Last Progeny Modified Branching Random Walk, Journal of Theoretical Probability, Volume 38 (2025) no. 2 | DOI:10.1007/s10959-025-01404-1
- Branching random walks with regularly varying perturbations, ESAIM: Probability and Statistics, Volume 28 (2024), p. 379 | DOI:10.1051/ps/2024014
- Special Topic: Branching Random Walk, Polymers, and Multiplicative Cascades, Random Walk, Brownian Motion, and Martingales, Volume 292 (2021), p. 243 | DOI:10.1007/978-3-030-78939-8_21
- Fluctuation lower bounds in planar random growth models, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 56 (2020) no. 4 | DOI:10.1214/19-aihp1043
- The endpoint distribution of directed polymers, The Annals of Probability, Volume 48 (2020) no. 2 | DOI:10.1214/19-aop1376
- Localization in Gaussian disordered systems at low temperature, The Annals of Probability, Volume 48 (2020) no. 6 | DOI:10.1214/20-aop1436
- Local fluctuations of critical Mandelbrot cascades, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 55 (2019) no. 2 | DOI:10.1214/18-aihp915
- Decompositions of log-correlated fields with applications, The Annals of Applied Probability, Volume 29 (2019) no. 6 | DOI:10.1214/19-aap1492
- The near-critical Gibbs measure of the branching random walk, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 3 | DOI:10.1214/17-aihp850
- The minimum of a branching random walk outside the boundary case, Bernoulli, Volume 24 (2018) no. 2 | DOI:10.3150/15-bej784
- Localization of directed polymers with general reference walk, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ejp158
- Extremes of local times for simple random walks on symmetric trees, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ejp164
- Genealogy of the extremal process of the branching random walk, Latin American Journal of Probability and Mathematical Statistics, Volume 15 (2018) no. 2, p. 1065 | DOI:10.30757/alea.v15-39
- Extended convergence of the extremal process of branching Brownian motion, The Annals of Applied Probability, Volume 27 (2017) no. 3 | DOI:10.1214/16-aap1244
- On the overlap distribution of Branching Random Walks, Electronic Journal of Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ejp3
- Towards rigorous analysis of the Levitov–Mirlin–Evers recursion, Nonlinearity, Volume 29 (2016) no. 12, p. 3871 | DOI:10.1088/0951-7715/29/12/3871
- Glassy phase and freezing of log-correlated Gaussian potentials, The Annals of Applied Probability, Volume 26 (2016) no. 2 | DOI:10.1214/14-aap1071
- Maximum of a log-correlated Gaussian field, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 51 (2015) no. 4 | DOI:10.1214/14-aihp633
- The Glassy Phase of Complex Branching Brownian Motion, Communications in Mathematical Physics, Volume 334 (2015) no. 3, p. 1157 | DOI:10.1007/s00220-014-2257-9
- On normalized multiplicative cascades under strong disorder, Electronic Communications in Probability, Volume 20 (2015) no. none | DOI:10.1214/ecp.v20-3936
- Basic properties of critical lognormal multiplicative chaos, The Annals of Probability, Volume 43 (2015) no. 5 | DOI:10.1214/14-aop931
- Critical Mandelbrot Cascades, Communications in Mathematical Physics, Volume 325 (2014) no. 2, p. 685 | DOI:10.1007/s00220-013-1829-4
- Hausdorff and Packing Spectra, Large Deviations, and Free Energy for Branching Random Walks in
R d, Communications in Mathematical Physics, Volume 331 (2014) no. 1, p. 139 | DOI:10.1007/s00220-014-2087-9 - Mandelbrot Cascades and Related Topics, Geometry and Analysis of Fractals, Volume 88 (2014), p. 1 | DOI:10.1007/978-3-662-43920-3_1
- Gaussian multiplicative chaos and applications: A review, Probability Surveys, Volume 11 (2014) no. none | DOI:10.1214/13-ps218
- On exact scaling log-infinitely divisible cascades, Probability Theory and Related Fields, Volume 160 (2014) no. 3-4, p. 521 | DOI:10.1007/s00440-013-0534-8
- Critical Gaussian multiplicative chaos: Convergence of the derivative martingale, The Annals of Probability, Volume 42 (2014) no. 5 | DOI:10.1214/13-aop890
- Gaussian Multiplicative Chaos and KPZ Duality, Communications in Mathematical Physics, Volume 323 (2013) no. 2, p. 451 | DOI:10.1007/s00220-013-1769-z
- The near-critical scaling window for directed polymers on disordered trees, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2036
Cité par 30 documents. Sources : Crossref
Commentaires - Politique