The aim of this Note is twofold. In the first step we study the Witten deformation for stratified spaces X and radial Morse functions on them and prove a spectral gap theorem for the Witten Laplacian. In the second step we focus on spaces with isolated conic singularities, where we construct a geometric complex associated to the Morse function and give two comparison results.
Cette Note a deux buts : Dans une première partie on étend la déformation de Witten au cas dʼun espace stratifié X muni de fonctions appelées fonctions de Morse radiales. On démontre le théorème du trou spectral pour le laplacien de Witten. Dans la deuxième partie, on se place dans la situation dʼun espace à singularités isolées et on construit un complexe géométrique que lʼon compare à celui des petites valeurs propres.
Accepted:
Published online:
Ursula Ludwig 1
@article{CRMATH_2012__350_9-10_525_0, author = {Ursula Ludwig}, title = {Comparison between two complexes on a singular space}, journal = {Comptes Rendus. Math\'ematique}, pages = {525--528}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.014}, language = {en}, }
Ursula Ludwig. Comparison between two complexes on a singular space. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 525-528. doi : 10.1016/j.crma.2012.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.014/
[1] Milnor and Ray–Singer metrics on the equivariant determinant of a flat, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212
[2] A complex of differential forms with bounded growth on a stratified manifold, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser., Volume 21 (1994) no. 2, pp. 213-234
[3] Hilbert complexes, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 88-132
[4] On the spectral geometry of spaces with cone-like singularities, Proc. Natl. Acad. Sci. USA, Volume 76 (1979), pp. 2103-2106
[5] On the Hodge theory of Riemannian pseudomanifolds, Honolulu, Hawaii, 1979 (Proc. Sympos. Pure Math.), Volume vol. XXXVI, Amer. Math. Soc., Providence, RI (1980), pp. 91-146
[6] Intersection homology theory, Topology, Volume 19 (1980), pp. 135-165
[7] Stratified Morse Theory, Ergeb. Math. Grenzgeb. (3), vol. 14, Springer-Verlag, Berlin, 1988
[8] U. Ludwig, The Witten deformation for even dimensional spaces with conformally conic singularities, Trans. Am. Math. Soc., in press; announced in C. R. Acad. Sci. Paris, Ser. I 348 (15–16) (2010) 915–918.
[9] -cohomology and intersection homology of stratified spaces, Duke Math. J., Volume 50 (1983), pp. 329-368
[10] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692
Cited by Sources:
Comments - Policy