Let P and Q be two complex polynomials and f be the induced rational function. In this Note we define a motivic Milnor fiber of the germ of f at an indeterminacy point x for a value a, a motivic Milnor fiber of f for a value a and finally motivic bifurcation sets.
Soit P et Q deux polynômes à coefficients complexes et f lʼapplication rationnelle quotient induite. Dans cette Note nous introduisons une fibre de Milnor motivique du germe de f en un point dʼindétermination x pour une valeur a, puis une fibre de Milnor motivique de f pour une valeur a et enfin des ensembles de bifurcation motiviques.
Accepted:
Published online:
Michel Raibaut 1
@article{CRMATH_2012__350_9-10_519_0, author = {Michel Raibaut}, title = {Motivic {Milnor} fibers of a rational function}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--524}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.04.021}, language = {en}, }
Michel Raibaut. Motivic Milnor fibers of a rational function. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 519-524. doi : 10.1016/j.crma.2012.04.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.021/
[1] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998) no. 3, pp. 505-537
[2] Geometry on arc spaces of algebraic varieties, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser, Basel (2001), pp. 327-348
[3] Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, Volume 41 (2002) no. 5, pp. 1031-1040
[4] Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006) no. 3, pp. 409-457
[5] Zeta functions of germs of meromorphic functions, and the Newton diagram, Funktsional. Anal. i Prilozhen., Volume 32 (1998) no. 2, pp. 26-35 (95)
[6] Bifurcations and topology of meromorphic germs, Cambridge, 2000 (NATO Sci. Ser. II Math. Phys. Chem.), Volume vol. 21, Kluwer Acad. Publ., Dordrecht (2001), pp. 279-304
[7] Some remarks on relative monodromy, Oslo, 1976, Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 397-403
[8] Monodromy at infinity of polynomial maps and mixed Hodge modules | arXiv
[9] Singularités à lʼinfini et intégration motivique, Bull. Soc. Math. France, Volume 140 (2012) no. 1, pp. 51-100
[10] Michel Raibaut, Motivic Milnor fibers of a rational function, submitted for publication.
[11] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333
Cited by Sources:
Comments - Policy