Let D be an integral domain and be the set of stable star operations of finite type on D. In this note, we show that if Ω is the set of nonzero prime ideals P of D with , then . We also show that if , then if and only if Ω is linearly ordered under inclusion; and if and only if each pair of elements in Ω are incomparable.
Soit D un anneau intègre et lʼensemble des opérations étoile, stables, de type fini sur D. Nous montrons dans cette note que, si Ω désigne lʼensemble des idéaux premiers non nuls P de D tels que , alors . Nous montrons également que, si , alors si et seulement si Ω est totalement ordonné par lʼinclusion et si et seulement si les éléments de Ω sont deux à deux incomparables.
Accepted:
Published online:
Gyu Whan Chang 1
@article{CRMATH_2012__350_11-12_557_0, author = {Gyu Whan Chang}, title = {On the cardinality of stable star operations of finite type on an integral domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--560}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.05.015}, language = {en}, }
Gyu Whan Chang. On the cardinality of stable star operations of finite type on an integral domain. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 557-560. doi : 10.1016/j.crma.2012.05.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.015/
[1] Star-operations induced by overrings, Comm. Algebra, Volume 16 (1988), pp. 2535-2553
[2] Two star-operations and their induced lattices, Comm. Algebra, Volume 28 (2000), pp. 2461-2475
[3] On t-linked overrings, Comm. Algebra, Volume 20 (1992), pp. 1463-1488
[4] t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra, Volume 17 (1989), pp. 2835-2852
[5] Multiplicative Ideal Theory, Queenʼs Papers in Pure Appl. Math., vol. 90, Queenʼs University, Kingston, ON, Canada, 1992
[6] Integral domains which admit at most two star operations, Comm. Algebra, Volume 39 (2011), pp. 1907-1921
[7] On t-invertibility II, Comm. Algebra, Volume 17 (1989), pp. 1955-1969
[8] Integral domains in which each ideal is a w-ideal, Comm. Algebra, Volume 33 (2005), pp. 1345-1355
[9] When the semistar operation is the identity, Comm. Algebra, Volume 36 (2008), pp. 1954-1975
Cited by Sources:
Comments - Policy