[Tout homomorphisme injectif de lʼalgèbre de Lie des dérivations triangulaires polynomiales est un automorphisme]
Nous montrons que tout homomorphisme injectif de lʼalgèbre de Lie des dérivations triangulaires de lʼalgèbre de polynômes est un automorphisme.
We prove that every monomorphism of the Lie algebra of triangular derivations of the polynomial algebra is an automorphism.
Accepté le :
Publié le :
Vladimir V. Bavula 1
@article{CRMATH_2012__350_11-12_553_0, author = {Vladimir V. Bavula}, title = {Every monomorphism of the {Lie} algebra of triangular polynomial derivations is an automorphism}, journal = {Comptes Rendus. Math\'ematique}, pages = {553--556}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.001}, language = {en}, }
TY - JOUR AU - Vladimir V. Bavula TI - Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism JO - Comptes Rendus. Mathématique PY - 2012 SP - 553 EP - 556 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.001 LA - en ID - CRMATH_2012__350_11-12_553_0 ER -
Vladimir V. Bavula. Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 553-556. doi : 10.1016/j.crma.2012.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.001/
[1] The Jacobian Conjecture2n implies the Dixmier Problemn | arXiv
[2] An analogue of the Conjecture of Dixmier is true for the algebra of polynomial integro-differential operators | arXiv
[3] Lie algebras of unitriangular polynomial derivations and an isomorphism criterion for their Lie factor algebras | arXiv
[4] The groups of automorphisms of the Lie algebras of unitriangular polynomial derivations | arXiv
[5] The Jacobian Conjecture is stably equivalent to the Dixmier Conjecture, Mosc. Math. J., Volume 7 (2007) no. 2, pp. 209-218 | arXiv
[6] Sur les algèbres de Weyl, Bull. Soc. Math. France, Volume 96 (1968), pp. 209-242
[7] Endomorphisms of Weyl algebra and p-curvatures, Osaka J. Math., Volume 42 (2005) no. 2, pp. 435-452
Cité par Sources :
Commentaires - Politique