[Combinatoire et topologie des pavages de Robinson]
Nous étudions lʼespace de tous les pavages qui peuvent sʼobtenir à partir des tuiles de Robinson (il sʼagit dʼun sous-décalage de type fini). Cet espace contient un unique sous-espace minimal, que nous décrivons par le biais dʼune substitution. En conséquence, il est possible de calculer les groupes de cohomologie associés, et de montrer quʼil sʼagit dʼun pavage de coupe et projection. Cet article a une annexe qui a été transmise à lʼAcadémie des Sciences.
We study the space of all tilings which can be obtained using the Robinson tiles (this is a two-dimensional subshift of finite type). We prove that it has a unique minimal subshift, and describe it by means of a substitution. This description allows to compute its cohomology groups, and prove that it is a model set. This article has an annex which was transmitted to the Académie des Sciences.
Accepté le :
Publié le :
Franz Gähler 1 ; Antoine Julien 2 ; Jean Savinien 3
@article{CRMATH_2012__350_11-12_627_0, author = {Franz G\"ahler and Antoine Julien and Jean Savinien}, title = {Combinatorics and topology of the {Robinson} tiling}, journal = {Comptes Rendus. Math\'ematique}, pages = {627--631}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.007}, language = {en}, }
Franz Gähler; Antoine Julien; Jean Savinien. Combinatorics and topology of the Robinson tiling. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 627-631. doi : 10.1016/j.crma.2012.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.007/
[1] Topological invariants for substitution tilings and their associated -algebras, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 509-537
[2] Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A: Math. Gen., Volume 24 (1991), pp. 4637-4654
[3] Putting the pieces together: understanding Robinsonʼs nonperiodic tilings, College Math. J., Volume 28 (1997), pp. 172-181
[4] Lattice substitution systems and model sets, Discrete Comput. Geom., Volume 25 (2001) no. 2, pp. 173-201
[5] Undecidability and nonperiodicity for tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209
Cité par Sources :
Commentaires - Politique