We prove in this Note that there is, for some foliated bundles, a bijective correspondence between Garnettʼs harmonic measures and measures on the fiber that are stationary for some probability measure on the holonomy group. As a consequence, we show the uniqueness of the harmonic measure in the case of some foliations transverse to projective fiber bundles.
On prouve dans cette Note quʼil y a, pour certains fibrés feuilletés, une correspondance bijective entre les mesures harmoniques au sens de Garnett et les mesures sur la fibre qui sont stationnaires pour une certaine mesure de probabilité sur le groupe dʼholonomie. Nous en déduisons lʼunicité de la mesure harmonique pour certains feuilletages transverses à une fibration projective.
Accepted:
Published online:
Sébastien Alvarez 1
@article{CRMATH_2012__350_11-12_621_0, author = {S\'ebastien Alvarez}, title = {Discretization of harmonic measures for foliated bundles}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--626}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.010}, language = {en}, }
Sébastien Alvarez. Discretization of harmonic measures for foliated bundles. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 621-626. doi : 10.1016/j.crma.2012.06.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.010/
[1] Discretization of positive harmonic functions on Riemannian manifolds and Martin boundary, Luminy, 1992 (Sémin. Congr.), Volume vol. 1, Soc. Math. Fr., Paris (1996), pp. 77-92
[2] Sur le comportement statistique des feuilles de certains feuilletages holomorphes, Monogr. Enseign. Math., vol. 38, 2001 (pp. 15–41)
[3] Généricité dʼexposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 579-624
[4] Geometric Theory of Foliations, Birkhäuser Boston Inc., 1985
[5] Noncommuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428
[6] Random walks and discrete subgroups of Lie groups, Adv. Probab. Relat. Top., vol. 1, Dekker, New York, 1971, pp. 1-63
[7] Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983), pp. 285-311
[8] Frontière de Furstenberg, propriété de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985), pp. 187-242
[9] Function theory, random paths and covering spaces, J. Differential Geom., Volume 19 (1984), pp. 299-323
[10] On the fundamental ideas of measure theory, Trans. Amer. Math. Soc., Volume 10 (1962), pp. 1-52
Cited by Sources:
Comments - Policy