[Critères de régularité des solutions faibles des équations de Navier–Stokes fondés sur les projections spectrales de la vorticité]
Soit
We denote
Accepté le :
Publié le :
Jiří Neustupa 1 ; Patrick Penel 2
@article{CRMATH_2012__350_11-12_597_0, author = {Ji\v{r}{\'\i} Neustupa and Patrick Penel}, title = {Regularity criteria for weak solutions to the {Navier{\textendash}Stokes} equations based on spectral projections of vorticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--602}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.008}, language = {en}, }
TY - JOUR AU - Jiří Neustupa AU - Patrick Penel TI - Regularity criteria for weak solutions to the Navier–Stokes equations based on spectral projections of vorticity JO - Comptes Rendus. Mathématique PY - 2012 SP - 597 EP - 602 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.008 LA - en ID - CRMATH_2012__350_11-12_597_0 ER -
%0 Journal Article %A Jiří Neustupa %A Patrick Penel %T Regularity criteria for weak solutions to the Navier–Stokes equations based on spectral projections of vorticity %J Comptes Rendus. Mathématique %D 2012 %P 597-602 %V 350 %N 11-12 %I Elsevier %R 10.1016/j.crma.2012.06.008 %G en %F CRMATH_2012__350_11-12_597_0
Jiří Neustupa; Patrick Penel. Regularity criteria for weak solutions to the Navier–Stokes equations based on spectral projections of vorticity. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 597-602. doi : 10.1016/j.crma.2012.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.008/
[1] A new regularity class for the Navier–Stokes equations in
[2] Regularity criteria for the three dimensional Navier–Stokes equations, Indiana Univ. Math. J., Volume 57 (2008) no. 6, pp. 2643-2661
[3] Regularity of solutions to the Navier–Stokes equation, Electron. J. Differential Equations, Volume 5 (1999), pp. 1-7
[4] Spectral analysis of a Stokes-type operator arising from flow around a rotating body, J. Math. Soc. Japan, Volume 63 (2011) no. 1, pp. 163-194
[5] An introduction to the Navier–Stokes initial–boundary value problem (G.P. Galdi; J. Heywood; R. Rannacher, eds.), Fundamental Directions in Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2000, pp. 1-98
[6] One component regularity for the Navier–Stokes equations, Nonlinearity, Volume 19 (2006) no. 2, pp. 453-469
[7] Navier–Stokes equations with regularity in one direction, J. Math. Phys., Volume 48 (2007) no. 6, p. 065203 (10 pp)
[8] Regularity of a suitable weak solution of the Navier–Stokes equations as a consequence of regularity of one velocity component (A. Sequeira; H. Beirao da Veiga; J.H. Videman, eds.), Applied Nonlinear Analysis, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 391-402
[9] An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity (G.P. Galdi; R. Rannacher, eds.), Topics in Mathematical Fluid Mechanics, Quaderni di Matematica, vol. 10, Dipartimento di Matematica della SUN, Napoli, 2003, pp. 163-183
[10] Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations (J. Neustupa; P. Penel, eds.), Mathematical Fluid Mechanics, Recent Results and Open Questions, Birkhäuser Verlag, Basel–Boston–Berlin, 2001, pp. 237-268
[11] J. Neustupa, P. Penel, Regularity of a weak solution to the Navier–Stokes equation via one component of a spectral projection of vorticity, preprint, 2012.
[12] Some new regularity criteria for the Navier–Stokes equations containing the gradient of velocity, Appl. Math., Volume 49 (2004) no. 5, pp. 483-493
[13] P. Penel, M. Pokorný, Improvement of some anisotropic regularity criteria for the Navier–Stokes equations, Discrete Contin. Dynam. Systems, Ser. S, in press.
[14] The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel–Boston–Berlin, 2001
[15] On the regularity of the solutions of the Navier–Stokes equations via one velocity component, Nonlinearity, Volume 23 (2010) no. 5, pp. 1097-1107
- Helicity and regularity of weak solutions to 3D Navier-Stokes equations, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 67 (2021) no. 2, pp. 435-445 | DOI:10.1007/s11565-021-00370-w | Zbl:1477.35134
- A regularity criterion for 3D Navier-Stokes equations via one component of velocity and vorticity, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 63 (2017) no. 2, pp. 353-363 | DOI:10.1007/s11565-017-0274-2 | Zbl:1386.35330
- Regularity criteria for the Navier-Stokes equations based on one component of velocity, Nonlinear Analysis. Real World Applications, Volume 35 (2017), pp. 379-396 | DOI:10.1016/j.nonrwa.2016.11.005 | Zbl:1360.35146
- A regularity criterion for the Navier-Stokes equations based on the gradient of one velocity component, Journal of Mathematical Analysis and Applications, Volume 437 (2016) no. 1, pp. 474-484 | DOI:10.1016/j.jmaa.2016.01.023 | Zbl:1334.35210
- Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 118 (2015), pp. 1-21 | DOI:10.1016/j.na.2015.01.011 | Zbl:1322.35109
- Regularity of a Weak Solution to the Navier–Stokes Equations via One Component of a Spectral Projection of Vorticity, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 2, p. 1681 | DOI:10.1137/120874874
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique